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The rapid advancement of mobile networks highlights the limitations of traditional network planning and optimization

methods, particularly in modeling, evaluation, and application. Network Digital Twins, which simulate networks in the digital

domain for evaluation, ofer a solution to these challenges. This concept is further enhanced by generative AI technology,

which promises more eicient and accurate AI-driven data generation for network simulation and optimization. This survey

provides insights into generative AI-empowered network digital twins. We begin by outlining the architecture of a network

digital twin, which encompasses both digital and physical domains. This architecture involves four key steps: data processing

and network monitoring, digital replication and network simulation, designing and training network optimizers, Sim2Real and

network control. Next, we systematically discuss the related studies in each step and make a detailed taxonomy of the problem

studied, the methods used, and the key designs leveraged. Each step is examined with a focus on the role of generative AI,

from estimating missing data and simulating network behaviors to designing control strategies and bridging the gap between

digital and physical domains. Finally, we discuss the open issues and challenges of generative AI-based network digital twins.
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1 Introduction

Over the past two decades, rapid technological advancements have signiicantly transformed mobile networks.
These developments have diversiied the services, target users, and devices connected to mobile networks,
including innovations such as brain-computer interaction, extended reality, holographic telepresence, global
ubiquitous connectivity, and pervasive intelligence. As network environments become increasingly complex,
critical players in the telecom industry, such as mobile network operators, equipment vendors, and communication
service providers, face signiicant pressure to manage networks eiciently. Currently, mobile network deployment,
optimization, and operation rely on solutions based on mathematical modeling and combinatorial optimization [1,
2]. Operators and researchers irst analyze the network problem in-depth, identifying controllable variables and
deining optimization objectives. They then utilize mathematical models to explicitly illustrate the functional
relationship between these variables and objectives through physical equations and logical rules. Hence, the
network problem is modeled into a mathematical optimization problem. Combinatorial optimization or heuristic
algorithms are then employed to solve this problem. Such a methodology has been successfully applied to solve
various network management problems in relatively simple mobile networks over the past decade.

Based on mathematical modeling and combinatorial optimization, the traditional methodology faces three key
challenges that limit its efectiveness in current complex mobile networks [3]. Firstly, the increasing complexity
of services makes it diicult for traditional methods to formulate mathematical equations accurately relecting
complex network conditions [4]. Secondly, the necessity of maintaining stable network operations prevents
the direct testing of optimization algorithms in real-world mobile networks, hindering accurate evaluation of
obtained optimization strategies [5]. Lastly, such oline network optimization approaches, relying on theoretical
models, often idealize real-world networks excessively, resulting in suboptimal performance when applied in
practical scenarios [6]. To address the challenges faced in network deployment and optimization, an innovative
concept called ‘Network Digital Twin’ (NDT) has been proposed [7ś9]. The idea behind NDT is to create a digital
replica of the physical mobile network, which aims to simulate the structure, environment, and status of network
components or systems with high idelity [10, 11]. NDT can efectively solve the problems of modeling, evaluation,
and application deicits. Firstly, by creating a virtual replica of the mobile network, NDT avoids the need for
complex mathematical modeling to explore the relationship between controllable variables and optimization
objectives in the mobile network. Secondly, developers and operators can use the NDT for what-if analysis [12, 13],
simulating and evaluating the performance of diferent network optimization algorithms without direct testing
in the real-world environment [14]. With such a what-if simulator, reinforcement learning (RL)-based optimizers
can iteratively interact with the simulator to identify the most efective network conigurations. Speciically,
RL allows an agent to learn by interacting with its environment, using trial and error to gradually develop
an optimal policy that guides decision-making to maximize long-term rewards [15]. RL has been particularly
successful in dynamic and complex decision-making environments, making it highly suitable for optimizing
mobile networks by facilitating adaptive control, eicient resource management, and real-time decision-making
in network operations. Finally, the digital twin is supposed to be a high-idelity replication of the real-world
network [16], which ensures the practical application of optimization strategies in the real-world environment.
The NDT is revolutionizing the mobile network industry, fundamentally changing how we interact with and
manage mobile networks.
Creating virtual simulations of physical mobile networks in the digital space for performance evaluation is

an essential research domain in networking [17ś19]. To this end, researchers have developed various network
simulators, such as NS-3 [20], OPNET [21], and OMNet++ [22]. These simulators are adept at processing virtual
packets and communication events under speciic network policies. They employ discrete event-driven methods
to simulate network element communication behaviors and provide key network performance metrics, like
throughput, latency, and user data rates. However, a signiicant limitation of these simulators is their low execution
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Fig. 1. Taxonomy of existing studies for generative AI-driven NDT.

eiciency, with simulation speeds signiicantly slower than those of real-worldmobile networks [23]. Alternatively,
researchers have sought to employ analytical modeling methods to depict the relationships between inluencing
factors and network performance metrics. Conventional analytical modeling methods, such as stochastic channel
models [24], Shannon capacity [25], and queuing theory [26], oversimpliied the real-world environment, leading
to inaccurate estimation.

In addition to these research-oriented simulators, several commercially available digital twin tools have been
introduced for building and managing digital replicas of physical devices. For instance, Azure Digital Twin [27]
is a cloud-based platform designed to create digital replicas of real-world systems, where twins are connected
into a twin graph by their relationships, and users can query this graph to monitor the states and events of
the twinned environment. MATLAB and Simulink [28] provide a predictive maintenance toolbox to support
digital twins with physics-based modeling, allowing the electrical components to conduct what-if simulation
analyses from irst principles. Moreover, Eclipse Ditto [29] focuses on managing the digital representation of
connected devices, ofering lexibility for IoT and industrial digital twin applications. However, Azure Digital
Twin and Eclipse Ditto primarily focus on providing data management and monitoring functions, with limited
support for simulation capabilities. Although MATLAB and Simulink tools ofer predictive simulation capabilities,
their execution eiciency is often low due to the physics-based modeling approach, which involves starting
simulations from irst principles. For NDT applications, the ability to rapidly and accurately simulate network
dynamics to adapt to changes in real-world networks is paramount. The ineiciency of discrete event-driven and
irst principle-based simulation methods and inaccurate analytical modeling methods fall short of meeting the
requirements of such applications. This gap highlights the need for an innovative network virtual simulation
technology that can simulate network dynamics and performance eiciently and accurately.
Recent advancements in generative Artiicial Intelligence (AI) have attracted widespread attention from the

scientiic community and the industry [30ś32]. Generative AI leverages machine learning algorithms to learn
from input data and generate new data samples that resemble the original input [33]. With its notable success
across diverse ields, generative AI has sparked signiicant interest in mobile networks, especially its integration
into NDTs [14, 34, 35]. Speciically, generative AI employs deep neural networks trained on extensive real-world
network data to learn the distribution characteristics, which allows for accurate mapping of diferent factors
within the network environment to the behavior and performance data of network elements, enabling the efective
generation of network data. As a result, integrating generative AI with NDTs represents a signiicant evolution
from the conventional, ineicient discrete event-driven simulation to a more eicient and accurate AI-driven
network data generation approach.
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Despite the expanding body of research on NDT and generative AI technologies, there has been a lack of
comprehensive surveys that consolidate recent advancements in both ields. This survey aims to ill that gap by
providing a detailed analysis of the architecture, technologies, and applications of generative AI-empowered
NDTs. Understanding this integration is crucial for researchers and industry professionals seeking to design and
implement more scalable, adaptive, and eicient next-generation AI-empowered network systems. In this survey,
we aim to illuminate recent advancements in generative AI as applied to NDTs, ofering a historical perspective
of this rapidly evolving area. Generative AI technology plays a crucial role in supporting the entire lifecycle of
NDTs. To ofer a clear understanding, we present a taxonomy that categorizes relevant studies based on their
applications across various phases of NDTs. These phases include data processing and network monitoring,
digital replication and network simulation, designing and training RL models, and sim-to-real transitions and
network control. As illustrated in Figure 1, during the data processing and network monitoring (Section 3),
which includes network data collection, imputation, and anomaly detection, generative AI assists by generating
realistic data points to ill spatial and temporal gaps, as well as data that represents a network’s normal operating
state for anomaly detection. The digital replication and network simulation (Section 4) focuses on simulating
network behaviors and conducting what-if analyses. Generative AI models can produce high-idelity data under
speciic network conditions, covering mobile users, network services, and wireless environment simulations.
In the design and training of RL (Section 5), generative AI is a critical tool for network operators, aiding in
developing control strategies within the digital domain. During the sim-to-real transition and network control
(Section 6), generative AI models the uncertainty distribution of real-world data, bridging the gap between digital
and physical domains, which helps correct simulator inaccuracies and ensures a smooth transition of network
control strategies from simulation to real-world environments. Additionally, we also provide an overview of the
NDT concept and generative AI methods in Section 2. Section 7 discusses the challenges and prospective future
developments in generative AI-driven NDTs. Section 8 provides the concluding remarks of the survey.

What sets this survey apart from previous work is its focus on the synergy between generative AI and NDTs.
While traditional surveys have covered either NDTs or AI in isolation, this survey emphasizes how generative AI
enhances the lifecycle of digital twinsÐfrom data processing and network monitoring to network optimization
and control. This survey provides a historical perspective and insights into the latest developments and future
directions, particularly in dynamic twins, continuous learning, large generative models, and large-scale network
twin platforms. The impact of this survey lies in its ability to guide future research and development in the
ield, highlighting the challenges and opportunities at the intersection of AI and mobile networks. By ofering a
detailed taxonomy and analysis of the state-of-the-art methods, this work will serve as a valuable reference for
academics and practitioners looking to explore new possibilities in NDT applications.

The main contributions of this paper can be summarized as follows.

• We provide a comprehensive historical overview of the ield of generative AI, particularly in its application
to the key steps of NDTs, including data processing and network monitoring, digital replication and network
simulation, designing and training network optimizer, ield trials, and network control. This perspective
helps contextualize current developments within a broader historical framework.

• We present an overview of the latest advancements in generative AI for NDTs, highlighting their signiicant
inluence on both academia and industry. We bridge theoretical innovation with practical use, showcasing
how generative AI reshapes NDTs to enhance management, optimization, and analysis.

• The challenges and future research opportunities are identiied, such as dynamic twins and continuous
learning, knowledge-informed network data generation, large pre-trained model for NDTs, large language
model enhanced network data generation, and construction of large-scale NDT platform.
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2 Overview

2.1 Network Digital Twins

Digital twin technology [36, 37] is a virtual model that precisely represents physical devices, systems, or processes
in real-time, which is revolutionizing the mobile network industry [7, 8, 10]. The concept behind NDT is to
create a digital replica of the mobile network or its components [9, 14], which enables real-time monitoring,
analysis, prediction, simulation, and optimization of its behavior. In particular, DTs help evaluate new algorithms,
policies, and services in situations where it is too risky to apply them to real-world networks [38], or when
opportunities for testing during operation are limited [39]. Efective implementation of DTs for mobile networks
can signiicantly contribute to advancing mobile networks and systems, extending into Beyond 5G (B5G) [40, 41]
or even 6G [42, 43]. Researchers, developers, and operators can conduct ‘what-if’ analyses, emulate and test
diferent conigurations, and identify optimal operations using DTs. This advancement will enable the design and
implementation of more powerful features and services, fundamentally transforming our interaction with and
utilization of mobile networks.
An overview of NDTs is provided in Figure 2. NDTs consist of four steps [8, 42, 44]: data processing and

network monitoring, digital replication and network simulation, designing and training RL, Sim2Real transition
and network control.

(1) Data processing and network monitoring. This step focuses on tracking and collecting data from a
mobile network and its components, including mobile devices, base stations, and network gateways. The
main goal is to gather, record, and monitor the real-time operational status of physical network devices.
Historical data is collected throughout the lifecycle of these devices, leading to the creation of data mirrors
in the digital domain. This process enables accurate digital descriptions of the devices. Generative AI is
vital at this step, as it can generate missing data, thus signiicantly enhancing the overall data integrity.

(2) Digital replication and network simulation. In this step, the data collected previously is used to create
digital replicas of the physical network components. The primary aim of these digital twins is to facilitate
detailed simulation and modeling of the network. This enables exploring various scenarios and outcomes
without afecting the real-world network. This phase is crucial for conducting what-if analyses, allowing for
the simulation of diferent network conigurations, strategies, and external inluences to assess their impact
on network performance and behavior. Here, generative AI can generate network data under speciic
conditions using network conigurations or historical data as input, thus achieving more precise simulations
and predictions.

(3) Designing and training RL. In this step, attention is turned towards leveraging insights from simulations
to design and train network optimization algorithms (i.e., RL). It involves employing advanced AI techniques,
such as reinforcement learning, to develop models capable of analyzing complex network scenarios and
suggesting optimizations. These models are trained with simulation data, ensuring they can make informed
decisions regarding network management and optimization in the digital domain.

(4) Sim2Real transition and network control. The inal step involves applying the insights and optimiza-
tions from previous phases to real-world network operations. Training RL agents in simulated environments
presents a major challenge known as the ‘reality gap’Ðthe discrepancies between simulated and real-world
environments. The inal phase is crucial for bridging this gap, ensuring that the optimized network conig-
urations derived from simulations can be efectively implemented. This step is essential for validating the
practical applicability of the digital twin’s insights and conirming the network’s adaptability to real-world
conditions and demands. Generative AI plays a vital role at this stage by learning and adapting to the
dynamic changes of real-world networks, enabling seamless integration between virtual and real-world
environments.
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Table 1. The entire lifecycle of digital twins in mobile networks.

Steps Functions
Physical-to-

digital

Digital-to-

digital

Digital-to-

physical

1○Data processing and net-

work monitoring

Tracking and monitoring device status,

collecting network data ✧ ✩ ✩

2○ Digital replication and

network simulation

Simulation, conducting what-if analyses

in the digital domain ✩ ✧ ✩

3○ Designing and training

network optimizer
Network optimization in the digital do-

main ✩ ✧ ✩

4○ Sim2Real transition and

network control

Bridging the gap between digital and

physical domains ✩ ✩ ✧

The operation of NDTs is characterized by a dual-loop process, comprising an internal loop within the digital
domain and an external loop bridging the digital and physical domains. This collaborative interaction of the two
loops guarantees both the efectiveness and the timeliness of network operations and optimization.

• Internal Loop: The internal loop comprises an AI-based optimization solver and simulation models of
network elements, having simulation capabilities and providing network performance statuses under
various network conigurations. Simulation models work iteratively with optimizers in the digital domain,
continuously conducting what-if analyses and network coniguration adjustments to seek optimal mobile
network conigurations.

• External Loop: The external loop primarily focuses on deploying network coniguration parameters derived
from the internal loop to the physical domain, dynamically controlling physical network elements, and
updating the digital twin models based on feedback from physical network performance. This creates an
interactive cycle between the digital and physical domains. This stage includes an in-depth evaluation of
diferences between real-world network performance and simulation model predictions. Based on these
diferences, the external loop undertakes steps to update and optimize the internal loop modules, achieving
efective integration and coordination between the physical and digital domains.

Thanks to their ‘Two-Domain, Four-Step, Dual-Loop’ collaborative methodology, NDTs ofer an adaptable and
eicient framework for network system planning, optimization, and operation. Table 1 delineates and contrasts
the four steps of NDTs, providing a clear comparison and overview of each stage within this innovative approach.
Notably, NDTs and Digital Twin Networks are distinct concepts within digital twin technology. In Appendix A.1,
we discuss their diferences and relationships and how NDTs could be extended to related applications such as
the metaverse.

ACM Comput. Surv.
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Table 2. Advantages and disadvantages of GAN, VAE, Difusion Models, and AR.

Methods Fast sampling High quality Diversity

GAN ✧ ✧ ✩

VAE ✧ ✩ ✧

Difusion ✩ ✧ ✧

AR ✩ ✧ ✧

2.2 Generative AI Methods

Generative AI models are designed to replicate the data distribution of input data through iterative training,
enabling the creation of synthetic data. This section introduces four key generative models: Variational Autoen-
coders (VAE), Generative Adversarial Networks (GANs), Difusion Models, and Autoregressive Models (AR). A
detailed introduction to these four key generative models can be found in Appendix A.2.
Table 2 presents the advantages and disadvantages of four major generative models: GAN, VAE, Difusion

Models, and AR. Speciically, once a GAN model is trained to convergence, its discriminator often struggles to
distinguish between real and generated samples, resulting in high-idelity generated samples. However, GAN’s
adversarial loss function may not fully cover the entire data distribution and can sometimes lead to mode
collapse [45], where the generator repetitively produces data from a speciic subset, reducing sample diversity.
For VAE models, the encoder predicts the distribution of latent variables, but the overlap in the latent variable
distribution for diferent inputs may lead to a blurred generation of samples, as the optimal decoding tends
to present an average of two inputs [46]. Nonetheless, by maximizing the likelihood function, VAE ensures
comprehensive coverage of all patterns in the training dataset, maintaining the diversity of generated samples.
Difusion models excel in generating high-idelity samples thanks to their gradual noise elimination mechanism.
However, the step-by-step construction approach of difusion models makes the sample generation process
relatively slow. AR, due to their serial generation of conditional distribution probabilities, are also signiicantly
less eicient compared to other models that directly generate and sample joint distributions, thus hindering
rapid data generation. Notably, no generative models can simultaneously achieve fast sampling, high quality, and
diversity. Their limitations stem from each generative model’s fundamental neural network design. We should
select suitable models based on speciic needs. For instance, given their rapid sampling capabilities, GANs and
VAEs are preferable for scenarios requiring quick responses. Alternatively, difusion and AR models are more
appropriate when the scenario demands high-quality and precise simulations.

2.3 Generative AI-empowered NDTs

As an innovative solution for NDTs, generative AI technology provides comprehensive technical support across all
four key stages: data processing and network monitoring, digital replication and network simulation, the design
and training of network optimizers, and Sim2Real transition and network control. This approach encompasses
the entire communication cycle between physical entities and their digital twins and interactions between the
twins.
In the data processing and network monitoring stage, generative AI is essential for data collection and

operational status detection, enabling seamless communication between physical entities and their digital
twins. One major challenge in this stage is maintaining real-time synchronization during physical-to-digital
communication. Data may be delayed or lost when networks experience high latency or unstable connectivity. In
such cases, generative AI can predict future states by analyzing past behaviors and current trends, allowing the
digital twin to preemptively update its state based on anticipated changes in the physical entity. Additionally,
generative AI models can infer missing information based on observed data, enabling comprehensive data
completion across both temporal and spatial dimensions. By analyzing historical patterns and current contexts,
these models can generate realistic data points to ill gaps caused by sensor downtime, network interruptions,
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or incomplete datasets. Moreover, communication between a physical entity and its digital counterpart may
occasionally fail due to hardware issues, coniguration errors, or environmental disruptions. Here, generative AI
plays a crucial role in fault detection and correction by identifying anomalies in communication patterns. By
generating data representing a network’s normal operating state, these models help identify potential issues;
signiicant deviations between actual network data and AI-generated data may indicate unusual activity or
problems requiring attention.
In the digital replication and simulation stage, the focus is on simulating network element behavior and

conducting what-if analyses, encompassing digital-to-digital communication between components of the NDT
system. Generative AI models can produce various types of network data, including user movement trajectories,
network service behaviors, and wireless environment dynamics. By learning the conditional probabilistic dis-
tribution of network elements’ data, generative AI can synthesize realistic network behavior data that closely
mirror real-world scenarios. By shifting from traditional discrete-event-driven network simulations and analytical
models to AI-driven network data generation, the eiciency and idelity of these simulations are signiicantly
enhanced. Notably, unlike conventional network simulators, where digital network elements communicate
primarily through discrete event signals, the generative AI framework enables digital twins to exchange state
information as conditional signals that inform behavior generation. This shift allows the digital twin to operate
with continuous updates and adapt to changing conditions in real time, resulting in more accurate and dynamic
simulations. This evolution towards conditional signal-based communication enables the incorporation of com-
plex, probabilistic scenarios that traditional models struggle to replicate. For example, rather than simply reacting
to pre-set events, the digital twin can dynamically model user behavior patterns, network traic luctuations, and
various environmental conditions.

During the design and training of RL, generative AI becomes an invaluable tool for network operators,
facilitating the development of control strategies within the digital domain. One of the key beneits of generative
AI in this stage is its ability to reduce the communication load between digital twins and optimizers by generating
compact representations of high-dimensional network states. Generative models can transform large-scale
network state data into reduced yet highly informative representations by utilizing autoencoders or other
advanced compression techniques. This process signiicantly reduces the bandwidth required for data transmission
between twins and optimizers, enabling more eicient and scalable communication. In addition to network state
compression, generative AI supports optimization in RL frameworks. For example, difusion models can act as
policy networks within RL frameworks, improving optimization performance. These models are particularly
well-suited for capturing complex, multimodal action distributions, thanks to their robust capability to model
joint distributions. By efectively handling diverse action distributions, difusion models facilitate more precise
and adaptable control strategies, ultimately enhancing the digital twin’s ability to respond to various operational
scenarios.
In the Sim2Real transition and network control stage, generative AI is crucial in addressing the inaccuracies

inherent in digital domain simulators. The communication gap between the digital twin and its physical counter-
part often arises from diferences in how the physical system operates versus how the digital model simulates it.
Generative AI helps to bridge this gap by correcting discrepancies between real-time data from the physical system
and the simulated data within the digital twin. Generative AI enables the digital twin to stay synchronized with
the physical entity by modeling uncertainties and accounting for environmental changes in real-world systems,
ensuring more accurate and timely control. These models can incorporate probabilistic elements, enabling them to
account for variances in system behavior due to factors such as luctuating environmental conditions, unexpected
hardware responses, or latency in data transmission. Moreover, generative AI facilitates the simulation-to-reality
transition of network strategies by modeling the diferential distribution between digital and physical domains.
Through this approach, generative AI can identify and learn the distribution of these diferences, creating a
more lexible and realistic digital twin better equipped to handle unexpected deviations. This allows operators to
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reine and validate control strategies in the digital domain before implementing them in real-world scenarios,
signiicantly reducing risks associated with deployment.
In subsequent sections, we will systematically delve into these critical technologies and their applications at

each step.

3 Data Processing and Network Monitoring

Data processing and network monitoring is a process that involves the collection and tracking of data from
various components of a mobile network, including mobile devices, base stations, and network gateways. Its
primary objective is to gather and record real-time operational status about these physical network devices. As
illustrated in Figure 3, this process entails three fundamental procedures: network data collection, network data
imputation and network data anomaly detection. Generative artiicial intelligence is a critical component of this
process as it can help generate missing data and conduct anomaly detection, which signiicantly enhances the
overall accuracy and reliability of the data.

3.1 Network Data Collection

Network data collection is a foundational step in constructing digital twins for network elements. In practice,
two primary methods are employed for data collection: network-side data measurement and device-side data
measurement. For network-side data measurement, state information from network elements is gathered through
multiple network interfaces [47, 48], such as the Serving Gateway (SGW), Mobility Management Entity (MME),
and Session Management Function (SMF), as deined by the 3rd Generation Partnership Project (3GPP). This type
of data typically refers to Measurement Report (MR) data, which is often collected at intervals of 15 to 30 minutes
containing key metrics such as traic load, the number of users served, throughput, transmission latency, and call
drop rates. Such data provides a broad view of the network’s operational status and performance. For device-side
data measurement, data is collected directly from user devices. The Minimization of Drive Tests (MDT) [49],
introduced by 3GPP in Release 10, allows network operators to gather measurement data directly from user
devices. Additionally, device-side measurements can be obtained through crowdsourcing, where dedicated apps
or software development kits (SDKs), provided by third-party mobile analytics companies like OpenSignal1

or Tutela2 collect data from user devices. Device-side data is typically more ine-grained than network-side
data, providing detailed information such as the Global Positioning System (GPS) location, Reference Signal
Quality (RSRQ), and Channel Quality Information (CQI) of mobile users. These metrics ofer deeper insights into
user experiences and network performance at the device level. Beyond network performance data, device-side
measurements can also be extended to gather environmental information. For instance, Yigit et al. [50] proposed
a drone-assisted data collection architecture that uses drones to capture environmental data, thereby enhancing
the capabilities of digital twins by integrating information about the physical surroundings of network elements.

1https://www.opensignal.com/.
2https://www.tutela.com/.
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3.2 Network Data Imputation

In the phase of monitoring mobile networks, a primary challenge we encounter is the limited observability of
network data. On the one hand, due to data undersampling or transmission faults, network data often exhibits
temporal gaps. Additionally, network data also faces issues of spatial sparsity, especially when data is collected
from user devices and other road test equipment, where availability cannot guarantee data collection at all required
locations. Fortunately, generative AI models can infer missing information based on observed data, ofering
completion of cross-temporal and spatial network data by approximating the posterior distribution of observed
values. Generative AI models’ capability helps enhance network data’s completeness and provides robust support
for establishing and maintaining network element mirror mappings. For example, Abiri et al. [51] developed a
denoising autoencoder capable of reconstructing data by introducing stochastic noise. This method can process
various data types and is realized as a stacked denoising autoencoder, which is eicient in computational time. Li
et al. [52] proposed a multi-modal deep learning model based on a stacked autoencoder architecture, where two
parallel autoencoders simultaneously consider spatial and temporal dependencies to efectively impute spatial
and temporal traic data. In a diferent approach, Yoon et al. [53] introduced Generative Adversarial Imputation
Nets (GAIN) within the GAN framework to impute missing values. Te generator imputes missing components
based on the observed data and outputs a completed vector. The discriminator then evaluates the completed
vector to identify which components were originally observed and which were imputed. While efective for
non-sequential datasets, GAIN struggles to handle temporal data efectively. To address the challenges with time
series data, Tashiro et al. [54] proposed Conditional Score-based Difusion models for Imputation (CSDI). CSDI
leverages transformers to capture temporal features and generates missing values conditioned on the observed
data based on the difusion framework.

3.3 Network Data Anomaly Detection

Real-time detection of network anomalies is one of the critical tasks in the mirror mapping phase of wireless
NDTs. By creating digital twins of network elements, we can achieve real-time, dynamic representations of
physical units, allowing for meticulous monitoring and anomaly detection [55]. For instance, Yigit et al. [56] were
among the irst to propose leveraging digital twins for detecting network service attacks. They implemented
a Yet Another Next Generation (YANG) model and an automated feature selection (AutoFS) module to handle
network data and used online learning to update the model to improve detection accuracy. They then further
extended their model to cyber-physical systems (CPS) in seaports [57] and 6G edge of things networks [58]. In
contrast to the online learning approach, Xu et al. [59] introduced a curriculum learning method to address
discrepancies between historical and real-time data in digital twin systems, ensuring more reliable anomaly
detection across dynamic environments. Bolat-Akça et al. [60] developed an autoencoder-based eXtreme Gradient
Boosting (XGBoost) classiier within digital twins for more accurate predictions. However, these traditional
digital-twin-enabled anomaly and attack detection are modeled as supervised learning problems, relying heavily
on manual labeling and classiication techniques, which can be a signiicant limitation in dynamic, evolving
network environments.

The advantage of generative AI models lies in their ability to generate data representative of a mobile network
in a normal operating state. When the deviation between the actual network data and the model-generated data
exceeds a certain threshold, the model can identify potential anomalies without the need for labeled data [61].
This approach is particularly efective in detecting anomalies in network data, as it can capture subtle changes
that conventional detection methods might overlook. Moreover, this technique can efectively learn without
extensive labeled data, which is crucial for identifying new or complex network anomalies. For example, Kong
et al. [62] introduced an unsupervised GAN for multivariate time series anomaly detection, featuring a novel
active distortion transformer (ADT) block. This ADT block distinguishes itself from the standard transformer
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by efectively leveraging prior knowledge of time sequences’ overall associations. It actively distorts input
sequences during reconstruction, enabling the network to recognize anomalies through sequence associations
and reconstruction errors. Additionally, Almodovar et al. [63] presented LogFit, a BERT-based language model
ine-tuned to recognize patterns in log data for log anomaly detection. The model demonstrates robustness in
handling vocabulary changes within logs and achieves superior performance in anomaly detection.

3.4 Lessons Learned and Discussions

We summarize noteworthy literature on data processing and network monitoring using generative AI in Table 3
(Appendix A.3).

The data collection phase is crucial for building accurate digital twins of network elements. Network-side
and device-side data collection methods complement each other, providing a broad and detailed view of the
network’s status. However, the reliance on ixed intervals (e.g., every 15ś30 minutes for network-side data) and
the occasional limitations of device-side data (e.g., coverage gaps or sampling irregularities) can lead to data
sparsity issues. The key lessons learned are that a multi-faceted data collection approach is essential for capturing
a holistic network view, yet addressing spatial and temporal gaps remains challenging. In such cases, generative
AI can help mitigate the gaps by predicting network states based on past behaviors and current trends.

Applying generative AI models for data imputation is critical for addressing data sparsity in mobile networks.
These models, such as autoencoders, GANs, and difusion models, have efectively illed temporal and spatial data
collection gaps. However, diferent methods are suited for diferent contexts. For example, while GAIN is efective
for static datasets, it struggles with temporal data, whereas models like CSDI speciically target time series data.
The lesson here is that selecting the appropriate AI model for the speciic nature of the data (sequential, spatial,
etc.) is crucial for efective imputation.
Traditional anomaly detection methods rely on supervised learning, often requiring labeled datasets and

struggling to adapt to new or emerging issues. Unsupervised approaches, such as generative models (e.g., GANs
and VAE), ofer a promising alternative by detecting anomalies without needing labeled data. These methods
enhance detection accuracy in dynamic environments and reduce dependence on manual intervention, making
them particularly valuable in complex, rapidly evolving networks. However, this also underscores the need to
reine these models further to manage the diversity and fast-paced changes in network environments.

In summary, combining multi-source data collection, generative AI for imputation, and unsupervised learning
for anomaly detection enhances mobile network monitoring. While network- and device-side data collection
complement each other, spatial and temporal gaps remain challenging. Generative AI helps ill these gaps, and
unsupervised models improve anomaly detection without needing labeled data. However, ongoing reinement is
required to adapt entirely to complex, rapidly changing network environments.

4 Digital replication and network simulation

Constructing digital replicas and network simulations requires considering multiple factors. From the perspective
of a network packet, the journey starts with the user’s intent, moves to the application level through user interac-
tions, and then traverses the network based on the network services and environments. The subsequent review
will examine digital twins from the perspectives of mobile users, network services, and network environments.
The organization of this section is illustrated in Figure 4.

4.1 Mobile User Simulation

Mobile users are critical components of mobile networks. Recently, the concept of a personal digital twin
(PDT) has emerged, aimed at creating a virtual representation of an individual’s behavior, preferences, and
traits within a given environment [64]. A PDT is designed to encompass a person’s external appearance and
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Fig. 4. Construction of digital replicas and network simulation.

internal physiological details [65], allowing it to predict health outcomes, behaviors, and emotional states and
simulate cognitive processes. In mobile networks, the PDT is crucial in tracking, predicting, and simulating an
individual’s real-time movements, habits, and needs, enabling enhanced network services such as personalized
recommendations, location-based optimizations, and eicient network resource allocation [66].
Accurately modeling user mobility behavior is crucial for optimizing performance in mobile networks, and

this has been the focus of extensive research. Speciically, there are two distinct approaches: individual mobility
modeling and crowd mobility modeling. Individual mobility modeling represents users’ mobility patterns and
personalized characteristics to generate their locations and behaviors. Conversely, crowd mobility modeling aims
to capture behavioral trends and patterns within a collective group, revealing the crowd’s low patterns and
aggregation behaviors.

4.1.1 Individual Mobility. Individual mobility modeling is used to model and analyze the behavior of individual
mobile users. By collecting and analyzing historical data of individual users, such as location information and
activity records, models can be constructed to generate users’ mobile behavior. The advent of generative AI has
been instrumental in generating detailed individual trajectories, utilizing a range of neural network-based models
like AR, GAN, VAE, and difusion models. AR models are adept at sequentially generating mobile user trajectory
transitions. For instance, Berke et al. [67] employed a recurrent neural network (RNN) to generate trajectories,
using population distributions (e.g., home and work locations) as inputs to create synthetic mobility traces. Feng
et al. [68] utilized Long Short-Term Memory (LSTM) networks for mobility prediction, while attention has been
used to reconstruct user trajectories, enhancing spatiotemporal resolution by leveraging periodic patterns. GANs
are particularly efective in generating high-quality, realistic data for individual mobility modeling. The TrajGAN
model [69], for instance, combines LSTM and GAN for trajectory generation. Ouyang et al. [70] discretized
locations into a matrix, highlighting visit times and duration, and generated sequential paths accordingly. Similarly,
Cao et al. [71] separated spatial and temporal data, employing GAN and Seq2Seq models for generating spatial
and temporal features separately. Feng et al. [72] proposed MoveSim, which uses a GAN framework with a
self-attention-based network to capture complex temporal transitions in human mobility, incorporating urban
structure knowledge for realistic trajectory generation. Wang et al. [73] modeled individual movement as a human
decision-making process, using generative adversary imitation learning to simulate that process. Yuan et al. [74]
further integrated Maslow’s need theory into this process for enhanced trajectory generation. VAEs are known
for their generative diversity and ability to model complex distributions. Long et al. [75] proposed a two-layer
VAE model for modeling user distributions and complex mobility patterns. Wang et al. [76] proposed a VAE-based
model that integrates the classical temporal point process to represent continuous temporal distribution efectively.
Recently, difusion models have gained popularity for their precise and controllable generation capabilities. Zhu
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et al. [77] introduced a difusion-based trajectory generation framework, efectively integrating difusion models
with spatiotemporal learning. Yuan et al. [78] used a difusion model with a co-attentive module to capture the
interdependence of trajectory time and space, enhancing learning at each step.

4.1.2 Crowd Mobility. Crowd mobility modeling is crucial for understanding large populations’ movement
patterns and behaviors. This ield involves analyzing data such as location trajectories, and pedestrian lows to
identify trends, aggregation phenomena, and behavioral regularities in crowds. Generative techniques in this
domain span various methods, including mathematical and physics-based models, machine-learning models,
and hybrids that incorporate physics and machine learning. Numerous studies have adopted mathematical and
physics-based generative methods. For instance, Xu et al. [79] proposed a model highlighting the fractal-like
urban morphologies and scaling laws in city growth patterns, focusing on social interactions and long-term
memory in human settlement mobility data. Crabtree et al. [80] simulated migration behaviors of Australian
ancestors, generating numerous probable migration pathways by considering diferent mechanisms in migration
dynamics. Cornes et al. [81] utilized the Social ForceModel (SFM) to simulate crowds in panic emergency scenarios,
incorporating individual panic stress into the desired velocity and modeling the spread and fade of panic using a
Susceptible-Infected-Recovered-Susceptible (SIRS) model. Chen et al. [82] focused on modeling irrational routing
decisions of panicky evacuees in emergencies. Wu et al. [83] simulated a high-building evacuation event using a
volume control model, treating evacuees as luid particles in luid low. Additionally, machine learning-based
generative techniques have gained traction inmodeling crowdmobility. Yao et al. [84] proposed a residual network-
based model, ResNet-SICS, for scene-independent crowd simulation, using crowd attributes as parameters and
learning from real-world data. Rong et al. [85] introduced the Graph-based Spatial-temporal Embedding with
Dynamic Fusion (GSTE-DF) model, which comprises node embedding learning for capturing dynamic spatial-
temporal features and low prediction for inferring population interactions. Shi et al. [86] proposed a novel
method under the GNS framework, using a heterogeneous graph to model interactions among people and the
environment. Zhang et al. [87] developed a physics-integrated machine learning (PIML) framework, combining
physics and neural network models through iterative learning and discovery processes. These diverse approaches
showcase the ield’s evolution and the increasing sophistication in modeling crowd mobility, leveraging the
strengths of both traditional and modern computational methods.

4.2 Network Service Simulation

The concept of network service simulation involves generating data that relects interactions between user
devices and network services. Based on a review of the existing literature, three key aspects currently shape
the construction of network service simulations: mobile app usage generation, network traic generation, and
network topology embedding generation.

4.2.1 Mobile App Usage. App usage can be represented as a sequence of Apps, constituting sequential temporal
data [88, 89]. The basic idea of temporal-based construction is to explore the temporal correlations between
app sequences to generate operation regularity about user preferences for network services. For example, an
attention mechanism-based U-net framework was proposed to capture the transaction feature of users for online
payment services [90]. Zhang et al. leveraged transformer to model app (un)installation behaviors [91]. The
transformer block collectively modeled the installation, uninstallation, and retention embeddings that improved
the quality of inal user embeddings. Also, He et al. adopted Informer, a transformer variant suitable for long
time-series forecasting to predict subsequent app usage in AliPay [92]. Notably, app usage behavior is associated
with temproal usage sequences and the aggregation of multidimensional features in various domains, such as user
preferences, textual instructions, and social bonds. There is abundant information on the relationship between
user-user, app-app, and user-app interactions, which can be utilized to improve generation performance.
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We can leverage services and sensor data that users interact with apps and smartphones to build the cyber-
representation of users. The type of construction is of great signiicance for building and understanding user
behaviors interacting with apps [91]. Gao et al. [93] combined the phone call and message behaviors with app
usage data and designed an attention layer to fuse the multi-view data into a compact feature vector. Zhao et
al. [94] designed a dual-DNN framework to extract user-personalized characteristics in app usage behaviors.
An attention mechanism was inserted in the framework to depict the mutual impact of multiple apps. Chen et
al. [95] further analyzed the inaccurate demographic prediction problem caused by a single data source. The work
designed an attention-based DNN network to calculate and fuse the similarities between heterogeneous datasets.
Recent research has leveraged GAN to cope with the data sparsity issue. SwipeGan [96] and CAGANet [97]
were proposed to generate synthetic user motion data such as touch, swipe, and acceleration. Experiment results
demonstrated the feasibility of GAN-based methods for data augmenting both the False Acceptance Rate (FAR)
and True Acceptance Rate (TAR), which were improved by diferent degrees.

4.2.2 Network Trafic Generation. Network traic generation involves two primary tasks: generating traic
volume and generating packet traces. Traic volume generation aims to predict network traic across diferent
areas by leveraging geographical and historical traic data in a time series format. In contrast, packet trace
generation focuses on producing detailed network usage records, including packet size and packet arrival patterns.

Most existing studies working on regional traic volume generation leverage convolutional neural networks
(CNNs), framing the problem as an image generation task. For example, CartaGenie [99] utilizes population
density and points of interest as conditional features to generate regional network traic using CNNs, while
SpectraGAN [100] employs a CNN-based conditional GAN to take into account periodic traic patterns. APP-
Shot [101], another CNN-based GAN model, further generates city-scale traic by incorporating data on urban
infrastructure, deployment density, and service usage frequency. Beyond image-based approaches, some studies
employ knowledge graphs to represent urban information across regions for traic volume generation. Hui et
al. [102] proposed a GAN model that enhances traic generation by incorporating an urban knowledge graph. As
illustrated in Figure 5, in the knowledge graph, urban components, including base stations, regions, business
areas, and points of interest, are modeled as entities, with their spatial correlations represented as relationships.
Zhang et al. [98] advanced this approach with ADAPTIVE, a deep transfer learning framework for zero-shot
city-scale cellular traic generation, bridging target and source cities through urban knowledge graphs.
Packet trace generation is critical for creating realistic, detailed records of network activity at the packet

level. Dowoo et al. [103] introduced the PcapGAN, which generates network packet traces based on time
series GAN, achieving realistic representations of network traic patterns. Building on this, Lin et al. [104]
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developed DoppelGANger, a model designed to generate packet attributes and feature series simultaneously,
thus comprehensively capturing the temporal dependencies between packets. For addressing data imbalance
in datasets with diverse traic types, Wang et al. [105] proposed the PacketCGAN model, which improves the
idelity of generated packet traces across various traic classes. More recently, difusion models have introduced
signiicant innovations in packet trace generation. NetDifusion [106], for instance, transforms time-series data
into two-dimensional images, allowing temporal correlations to be captured more efectively. This approach
leverages a pre-trained model to generate these images, from which packet traces are then obtained through a
decoding process. NetDif [107] incorporates user app usage intent as a condition within a dual-layer transformer-
based difusion model, enabling it to capture complex relationships between multiple network low features,
such as packet size, inter-arrival time, source, and destination. This advancement highlights difusion models’
potential to improve the accuracy and realism of generated packet traces.

4.2.3 Network Topology Embedding. Networks comprise massive devices and heterogeneous transmission chan-
nels, naturally containing a wealth of node-edge information. Network embedding aims to represent the informa-
tion by decomposing high-dimensional, non-linear network features into low-dimensional representations [108].
Extracting latent and low-dimensional features of node information in the network facilitates downstream
analysis, such as spatio-temporal association, network traic characterization, and resource scheduling.
With the help of generative models, the network embedding could be well designed. It can serve well for

downstream tasks like link prediction, network completion, and latency estimation. Gao et al. [109] used GANs
to generate network node proximities by training a model on a attributed network graph. Ban et al. [110]
further explored structural and content similarity through network homophily, combining features of central
nodes and their neighborhoods to reduce distribution bias. He et al. [111] developed a generative network
with three modules: a generator, competitor, and discriminator, where the competitor generates fake latent
features to guide the generator in creating efective representations for network embedding. Lei et al. [112]
investigated Wasserstein GAN (WGAN) to make network embedding for link prediction. To efectively capture
the spatial-temporal characteristics of the network, the generator integrates a graph convolutional network
(GCN) layer and an LSTM layer. Besides link predictions, generative model-empowered network embedding
could also tackle network completion, wherein dynamic links and missing nodes could be generated. Tran et
al. [113] explored an autoregressive generative model to extract the latent feature of networks, with respective
to edge dynamics and node relationships. The generated embedding was utilized to synthesize partial network
topology for network completion. Despite topology-oriented applications, Wang et al. [114] investigated network
embedding in end-to-end latency estimation for network slicing. The network embedding was generated by a
GAN that took account of the service volume of diferent virtual network functions. The generated embedding
was then fed into a GCN for latency estimation.

4.3 Wireless Environment Simulation

Modelingwireless transmission environments is a fundamental aspect of network simulation. During transmission,
signals interact with the environment, leading to phenomena such as relection, difraction, and scattering, which
make accurate modeling challenging. Recently, with the advancements in deep learning, generative AI has
emerged as a promising and efective tool for simulating wireless environments, including tasks like channel
estimation and radio map estimation.

4.3.1 Channel Estimation. In channel modeling, researchers commonly analyze the relationship between the
transmitter (Tx) and receiver (Rx) pair, examining various characteristics such as path loss, channel state informa-
tion (CSI), delay spread (DS), frequency spread (FS), angle of departure (AoD), and angle of arrival (AoA). These
parameters are crucial for the design of transceivers and antenna systems, which greatly inluence transmission
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performance. GANs have shown signiicant potential in modeling complex wireless channels. Xiao et al. [115]
generated the CSI of a multiple-input multiple-output (MIMO) system using CNN-based GANs. In their approach,
the CSI matrix was organized as an image with dimensions �� × �� × 2, where �� and �� represent the number
of transmitting and receiving antennas, and the ‘2’ corresponds to the real and imaginary components of the
CSI. Hu et al. [116] applied GANs to model multi-frequency channels in mmWave wireless communication.
Their method irst clustered multi-path transmissions using K-means based on channel characteristics. They
then used this cluster information and the receiver’s location as input conditions for the GAN to model the
channel’s AoA and DS. Zou et al. [117] provided a comprehensive overview of the application of GANs to wireless
communications, focusing on CSI prediction and signal classiication. Xia et al. [118] employed a VAE model for
UAV communication channel estimation. Their method involves two stages: in the irst stage, a neural network
predicts the link status (LoS or NLoS), while in the second stage, conditional generation is performed based
on the link status and receiver coordinates, with the mean and variance of the path loss as outputs. Arvinte et
al. [119] utilized a difusion model for MIMO CSI estimation. Their results demonstrated competitive performance
within the training distribution and out-of-distribution scenarios, showcasing the diversity and robustness of the
difusion model. Similarly, Sengupta et al. [120] also showed that difusion models provide more stable training
and greater diversity in generating channel characteristics like AoD and AoA compared to GANs. Moreover, after
being pre-trained on a comprehensive urban macro-cellular dataset, the difusion model demonstrated strong
generalization ability on a smaller, out-of-distribution urban micro-cellular dataset.

4.3.2 Radio Map Estimation. Radio map estimation is a practical problem that, given the Base Station (BS)
location and conigurations and scenario geographic environment information, generates or interpolates to obtain
ine-resolution Reference Signal Received Power or path loss distribution within the region of interest. A radio map
reveals the coverage area of a BS and supports the network deployment and spectrum planning. Zhang et al. [121]
propose a conditional GAN to complement the radio map based on sparse observations. The model consists
of two phases: the upsampling for interpolation and the downsampling for reining details. Correspondingly,
during the training stage, the model learns to interpolate and later learns to modify the generated radio map by
considering the geometric and frequency-domain factors. Vankayala et al. [122] apply GAN to estimate the radio
map, given the building layout as a prerequisite. Marey et al. [123] utilize GAN to predict path loss. It trains two
GAN models with the same architecture but adopts diferent graphical information as input: the satellite map and
the height map, respectively. The experimental results prove the model can achieve close path loss prediction
performance as raytracing. Li et al. [124] rely on VAE to encode the environmental information into latent space
and further leverage this hidden environmental representation in a neural network for predicting the RSRP mean
and variance. Qiu et al. [125] propose a difusion model-based approach for indoor radio map interpolation. It
regards the indoor layout as the input condition during the denoise procedure. The experimental results prove
that the difusion model can achieve signiicant interpolation accuracy with only a few measurements.

4.4 Lessons Learned and Discussions

Tables 4, 5, and 6 (Appendix A.3) present the summary of prominent literature in mobile user simulation, network
service simulation, and wireless environment simulation, respectively.

Leveraging generative AI models like AR, GANs, VAEs, and difusion models reveals the unique strengths each
brings to network simulation. For example, GANs are particularly efective for modeling individual mobility
and crowd behavior, while difusion models excel in generating realistic packet traces and handling complex
dependencies. However, each model has limitations, particularly regarding data requirements and generalization.
Training these models requires large datasets, and they may struggle to adapt to unobserved behaviors or new
environments, especially in diverse settings. Additionally, biases in training data can lead to skewed simulations,
emphasizing the need for robust data handling and preprocessing.
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Efective simulations depend on integrating multiple dimensions, including device density, spatial layout, and
temporal factorsÐespecially critical for crowd mobility and network traic modeling. Urban knowledge graphs,
representing data such as base station locations, functional areas, and regional connections, signiicantly enhance
the realism of network traic and topology simulations. These contextual factors align simulations more closely
with real-world conditions, supporting network planning and optimization. Thus, knowledge graphs play a vital
role in scaling network simulations for complex, real-world applications.
Accurate wireless channel simulation requires robust models capable of generalizing across diverse environ-

ments. Integrating transmitter engineering parameters and geographical and environmental information as
preconditions for generative model design can enhance simulation idelity by tailoring the generation process to
speciic settings. Among generative models, difusion models ofer superior sample quality and broader mode
coverage compared to GANs and VAEs. Conditional difusion models improve performance by allowing control-
lable generation and adapting outputs to speciic conditions or requirements. Although generative models add
signiicant detail to simulations, they are often computationally intensive. Achieving a balance between realism
and eiciencyÐespecially in complex tasks like radio map estimationÐcalls for a hybrid approach, combining
simpler models for general tasks with more advanced models for high-priority areas. This balance is crucial to
maintaining accuracy in scalable network simulations without incurring excessive computational costs.

In summary, integrating generative modeling into network simulations requires a balanced, multidimensional
approach that leverages the strengths of various model types. Focusing on personalization, contextualization, and
predictive capabilities supports the development of resilient, responsive network solutions capable of accurately
simulating performance across complex, dynamic environments.

5 Designing and Training Reinforcement Learning

Network optimizers serve as a vital interface for network operators to control digital twin-enabled mobile
networks, facilitating adaptive control and system design in the digital domain. RL has become pivotal in mobile
network optimizers, particularly for NDT applications [126]. As shown in Figure 6, RL provides a framework for
agents to learn optimal actions through trial-and-error experiences under network simulation environment [127].
The primary goal is to develop a policy that maps states to actions for maximum long-term reward, a process
underpinned by value estimationÐassigning expected rewards to state-action pairs. RL algorithms are typically
classiied into three categories: Single-agent RL (SARL), Multi-agent RL (MARL), and Safe RL. To elucidate how
generative AI can enhance the design and training of RL algorithms, we also delve into the most advanced
research focusing on the application of difusion models in RL.

Fig. 6. Reinforcement learning provides a framework for agents to learn optimal actions through trial-and-error experiences
under network simulation environment.

5.1 Single-agent Reinforcement Learning

SARL algorithms in NDTs have become crucial for intelligent decision-making. By learning from interactions
with the network simulator, the agent adapts to meet user demands, reduce congestion, and maximize network
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capacity. For instance, Mseddi et al. [128] applied Deep Q-Networks (DQN) based RL to tackle resource allocations
in dynamic fog computing environments. Liu et al. [129] introduced a DT-assisted task oloading system (DTTOS)
that minimizes power overhead and network delay. DTTOS models task oloading as a Markov Decision Process
(MDP), employing Double DQN and DTA to optimize system performance. Furthermore, Chen et al. [130]
presented a resource allocation algorithm for vehicular fog computing networks, utilizing virtual network
embedding (VNE) and Deep RL (DRL), which incorporates spectral graph theory and GCNs to allocate resources
efectively, enhancing revenue and cost eiciency. Also, coverage optimization is a vital application of SARL
in mobile NDTs. The RL agent learns to make intelligent decisions about base station placement, antenna
coniguration, and transmit power settings to enhance network coverage. Vannella et al. [131] optimized antenna
tilt control policies using a contextual linear bandit framework, which balances exploiting the current best policy
with exploring new policies and establishing theoretical guarantees such as sample complexity bounds and
expected regret analysis. SARL algorithms are also widely employed for adapting to evolving network conditions,
channel characteristics, and traic demands, aiming to maximize throughput and energy eiciency. Li et al. [132]
introduced DRL-PPONSA, an intelligent routing algorithm with network situational awareness. DRL-PPONSA
gathers network traic data, predicts future traic luctuations, and leverages DRL for data forwarding, enhancing
communication quality in dynamic wireless network topologies. Malta et al. [133] proposed using DRL to optimize
energy consumption in 5G Ultra-Dense Networks. Their approach develops intelligent sleep mode management
policies, dynamically activating or deactivating base station components to minimize energy consumption.

5.2 Multi-agent Reinforcement Learning

In dynamic and uncertain network environments, each network entity must make local decisions to enhance its
performance. MARL ofers an efective solution by enabling entities to learn optimal policies through interactions
with the environment and by observing the behavior of other entities [134]. MARL is particularly well-suited to
addressing the challenges of vehicular networks, fostering collaboration among agents to solve complex problems
that individual vehicles cannot handle alone. Several studies highlight the efectiveness of MARL in resource
allocation, demonstrating its ability to allocate resourcesÐsuch as bandwidth and powerÐequitably among
vehicles. For example, Fu et al. [135] proposed a DT-assisted framework for vehicle platooning, integrating a
tactic-interactive MARL method to address cooperation aging and optimize sub-band and power allocation while
meeting quality-of-service (QoS) requirements. Ji et al. [136] developed a MARL-based approach to maximize
the sum rate of vehicle-to-infrastructure (V2I) links while ensuring cellular transmission rates and meeting the
reliability and delay requirements of vehicle-to-vehicle (V2V) communication. Mafuta et al. [137] introduced a
multi-agent double deep Q-network (DDQN) framework that combines centralized learning with distributed
implementation to optimize V2I sum rates while meeting V2V reliability and delay constraints. Similarly, Gui
et al. [138] proposed a federated multi-agent DRL strategy that monitors neighboring agents’ actions, balances
accumulated rewards, and ensures fast convergence to maintain the QoS of V2V links.

5.3 Safe Reinforcement Learning

Safe RL refers to learning policies that maximize the expected return in scenarios where ensuring system
performance and safety constraints is crucial during learning and deployment. For example, Lima et al. [139]
utilized a Constrained Markov Decision Process to derive an optimal resource allocation policy. They proposed
a primal-dual learning algorithm alternating between updating model parameters through RL iterations and a
dual variable crucial to ensuring constraint satisfaction. Zhang et al. [140] tackled the challenge of managing the
three-dimensional (3D) dynamic movement of Unmanned Aerial Vehicles (UAVs) under coverage constraints.
They formulated the problem as a Constrained Markov Decision Process (CMDP) and developed a Constrained
Deep Q-Network (cDQN) algorithm to solve it. A primal-dual method was employed to ensure compliance with
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the coverage constraints by alternately training the primal and dual variables. Huang et al. [141] introduced Safe-
NORA, a Safe RL approach, for dynamic resource allocation to satisfy various users’ traic demands. They utilized
the P3O algorithm [142], which employs a particular penalty function to address cost constraints. Assigning
a suiciently large weight to this penalty function makes it possible to guarantee the optimal solution for the
original problem.

5.4 Difusion Models for Reinforcement Learning

Current RL algorithms often utilize Gaussian distributions to parameterize their policies, limiting action gen-
eration to exhibit a uni-modal distribution and constraining their capacity to model joint distributions for
multi-variable policies efectively [143]. Thus, traditional RL approaches face challenges in managing complex
network optimization tasks, such as eiciently optimizing multi-domain network conigurations like antenna
angles, bandwidth, and power. In contrast, difusion models ofer a more lexible approach by transforming a
uni-modal Gaussian distribution into a multi-modal policy distribution through denoising. This enables difusion
models to capture and approximate more complex policy distributions to enhance RL’s exploration capabilities.
Recent research has explored integrating difusion models with RL by conceptualizing the RL policy as a reverse
denoising difusion process. For example, Du et al. [144] introduced a tutorial demonstrating how difusion models
can generate optimization trajectories by leveraging expert databases. They further presented an AI-based power
allocation framework employing the denoising difusion model component as the policy network within RL [34].
This framework integrates various environmental factorsÐsuch as the wireless channel model and the number of
objects in semantic communicationÐinto the denoising conditions. The objective is to maximize the expected
cumulative reward over time by optimizing the transmission power weights for each object. Furthermore, Du et
al. [145] proposed the AGOD algorithm, which generates optimal discrete decisions from Gaussian noise using a
difusion model. This approach incorporates optimization constraints into the decision-making process, where
the denoising component acts as the policy network to produce the best possible decisions for service provider
selection.

5.5 Lessons Learned and Discussion

Table 7 (Appendix A.3) provides a summary of key literature on the design and training of reinforcement learning
algorithms for NDTs.

SARL has proven efective for network applications with singular objectives, such as mobility management and
power control. As network environments grow more complex and interdependencies increase, SARL’s limitations
become evident. These interconnected scenarios require more dynamic, multi-agent solutions. MARL, in contrast,
allows individual network entities to interact and learn cooperative policies, fostering eicient resource sharing
and equitable service distribution among agents. This collaborative approach is crucial when independent agents
must synchronize their actions, such as resource allocation for vehicular networks, to maintain network quality
and QoS requirements. Nevertheless, designing and tuning MARL is complex due to inter-agent dependencies,
necessitating sophisticated coordination mechanisms for efective collaboration.

Safe RL methods emphasize prioritizing safety in mission-critical applications, particularly those using CMDPs
and primal-dual algorithms. Environments such as UAV operations or constrained-resource systems require strict
safety constraints to prevent operational failures. Safe RL enables systems to optimize performance while adhering
to these constraints, but achieving this balance demands specialized algorithms that ensure both compliance and
optimal operation. This focus on both performance and safety highlights Safe RL’s essential role in situations
where reliability and user safety are critical.

Traditional RL frameworks often rely on Gaussian distributions to represent policies, which limits their
lexibility in handling complex, multi-modal conigurations involving multiple variables, such as antenna angles,
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Fig. 7. There are notable diferences between simulated environments and actual physical setings, creating a reality gap that
must be addressed for efective Sim2Real transitions. Various strategies have been proposed to bridge this gap, including
domain randomization, system identification, meta RL, and transfer learning.

bandwidth, and power. Difusion models ofer a promising solution by transforming Gaussian-based policies
into multi-modal distributions, enhancing RL’s exploration capabilities, and providing more reined control
over complex conigurations. By enabling RL agents to explore a broader solution space, difusion models prove
particularly efective for intricate tasks like dynamic power allocation and bandwidth distribution in NDTs. As
such, difusion models represent a signiicant advancement, expanding RL’s adaptability to complex network
optimizations.
RL provides a framework for agents to learn optimal actions through trial-and-error experiences within a

network simulation environment. Such trial-and-error methods are not permissible in real-world networks
due to stringent safety requirements, mainly since RL necessitates frequent interactions for efective learning.
Fortunately, by leveraging simulation environments, RL-based optimizers can be trained online in a digital domain
rather than in real-world networks. By conducting online training in the simulation environment and applying
the optimized actions to real-world networks through sim-to-real technologies, network performance can be
adaptively controlled and improved. Consequently, network elements’ future status and corresponding digital
twins can also be predicted and continuously evolve.

These lessons highlight the importance of context-aware, collaborative, and safety-focused RL frameworks for
optimizing NDTs. Incorporating advanced techniques such as difusion models and primal-dual optimization
methods shows signiicant promise for future development, enhancing RL’s ability to address the complex
demands of adaptive network management in modern, large-scale mobile networks.

6 Sim2Real Transition and Network Control

Network simulators ofer a controlled and cost-efective environment for training and evaluating RL algorithms.
When RL agents are trained in simulation twins, a wide range of behaviors can be explored, and optimal policies
can be developed without the risk of damaging real-world systems. However, there is a signiicant challenge
in this area known as the ‘reality gap’ - the diferences between simulated and actual environments. As shown
in Figure 7, the Sim2Real transition and network control step must efectively bridge this gap to ensure the
efectiveness of implementing optimized network conigurations derived from network simulations. Several
strategies have been proposed to address this challenge, including domain randomization, system identiication,
meta RL, and transfer learning.

6.1 Domain Randomization

Domain randomization is a powerful technique to tackle the sim2real challenge by systematically introducing
variations in simulator parameters. This process aims to capture the diversity and variability of real-world condi-
tions, enabling the development of adaptable and resilient controllers in real-world applications. A foundational
study by Wang et al. [146] pioneered this approach, using simulator randomization to generate a rich dataset for
training. By exploring various initial conditions, external disturbances, goal variations, and actuator noise, their
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work signiicantly improved the robustness of controllers, laying the groundwork for subsequent advancements.
Building on this foundation, Mordatch et al. [147] applied domain randomization through a inite model ensemble
to optimize the trajectories of a humanoid robot, achieving one of the earliest successful sim2real transfers. Their
work demonstrated the practical value of domain randomization in real-world scenarios. Further advancing the
ield, Siekmann et al. [148] implemented model-free RL in settings with uniformly distributed dynamic parameters
and randomized simulations. Their study highlighted the critical role of recurrent architectures and terrain
randomization in overcoming the sim2real gap, underscoring domain randomization’s essential contributions to
reliable, real-world performance.

6.2 System Identification

Simulators, though advanced, are not perfect replicas of the real world. Key physical parameters, such as those
inluenced by temperature, humidity, positioning, and wear and tear, can luctuate dramatically, adding complexity
to the task of network control. System identiication seeks to bridge this gap by creating precise mathematical
models that closely relect real-world physical systems [149]. This technique has gained signiicant traction
in aligning simulation parameters with real-world dynamics. Building on foundational research by Gautier et
al. [150] and Khosla et al. [151], system identiication has established critical principles for parameter tuning to
bridge the reality gap. Bayesian inference techniques [152] are widely employed in this alignment process to
determine the posterior distribution of simulation parameters. Comparing simulated trajectories with actual real-
world trajectories helps identify simulation parameters that accurately align with the dynamics of real-world and
simulation environments. In further advancements, Chebotar et al. [153] have formulated this inference challenge
as an RL problem, aiming to minimize trajectory discrepancies between simulations and real-world movements.
Despite these RL-based methods, challenges remain when simulations struggle to capture the full complexity
and dynamics of the real world. Thus, some researchers [154, 155] have introduced low-dimensional latent
representations developed through regression models to align simulation parameters with observed dynamics,
ofering a more lexible and adaptive approach that can adjust to changing conditions.

6.3 Meta Learning

Meta-learning [156, 157] focuses on developing the ability to adapt to unseen test tasks by leveraging experiences
from multiple training tasks. An efective meta-learning model should be trained across a diverse range of
learning tasks and optimized to perform well across various task distributions, including those not encountered
during training. This ield has gained signiicant attention in recent years, leading to increased research exploring
its potential to address the Sim2Real problem. For example, Wang et al. [158] and Nagabandi et al. [159] have
successfully integrated meta-learning principles into the framework of RL. During the meta-training phase, a
wide array of domain instances is introduced to the model, exposing it to various environmental variations. By
confronting the model with these diverse experiences, it becomes better equipped to handle unforeseen situations
in real-world settings. As highlighted by Finn et al. [157], the primary goal of meta-learning is to identify a
set of initial model parametersÐreferred to as initial weightsÐthat can eiciently generalize to new tasks with
minimal ine-tuning. This capability to rapidly adapt to novel tasks makes meta-learning a powerful tool in
dynamic environments, ensuring that the model can efectively address the same task even when environmental
conditions change, particularly during the transition of Sim2Real.

6.4 Transfer Learning

Transfer learning aims to improve the performance of target learners in speciic domains by leveraging knowledge
from diferent yet related source domains. In the Sim2Real transfer contextÐwhere simulated environments
are used to develop policies for reliable real-world performanceÐseveral innovative approaches address the
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challenges posed by the reality gap. Christiano et al. [160] introduced a method that trains a deep inverse
dynamics model. This model bridges the reality gap by transforming actions generated by a policy into adjusted
actions more suitable for real-world execution. The core idea is that applying the original action in the real-world
system and the transformed action in the simulator should lead to the same subsequent state. This method
minimizes discrepancies between simulated and real-world behavior by aligning outcomes across these two
domains. Hanna and Stone [161] proposed an action transformation framework to ensure that actions in the
simulator produce outcomes identical to those generated by corresponding actions in the real world. By learning
to adjust simulator-generated actions to match real-world dynamics, this framework further aligns the two
domains, enhancing the performance of transferred policies. Rusu et al. [162] expanded on these concepts with an
end-to-end learning system based on a progressively expanding neural network architecture, demonstrating how
perception and control can be integrated for complex control tasks. The network training occurs in two phases:
the initial segment is trained entirely in simulation to develop general representations, while a second segment,
added during Sim2Real transfer, relies on real-world data to ine-tune the system. This approach ensures the inal
model efectively adapts to the real-world environments.

6.5 Lessons Learned and Discussion

The transition from simulation to real-world environments in RL for network control presents distinct challenges
and opportunities. Through practical experiences, several critical insights have emerged, highlighting key factors
that enhance RL model performance and reliability when deployed in complex, unpredictable real-world settings.

Network simulations ofer a safe, cost-efective environment for RL training but often introduce a reality gap
due to simpliied or idealized conditions. This gap varies depending on the application, network dynamics, and
environmental factors, requiring adaptive strategies tailored to each use case. Bridging the reality gap demands
lexible, context-speciic approaches that efectively capture real-world dynamics.
Domain randomization has proven valuable in building robust models capable of generalizing to real-world

conditions by introducing controlled variations in simulated environments. However, excessive randomization
may lead to ineiciencies or cause models to overit to unlikely scenarios, potentially reducing performance in
practical applications. Striking the right balance between diversity and realism in simulated environments is
essential to avoid trade-ofs between robustness and accuracy. Aligning simulation parameters with real-world
dynamics through system identiication is another critical step in minimizing discrepancies. This process, however,
can be computationally intensive, especially for highly dynamic or nonlinear systems. Techniques like Bayesian
inference and other statistical methods are promising but often require extensive real-world data, which can be
challenging to obtain. Accurate system identiication remains essential but must be balanced against practical
constraints on resources and data availability.
Meta-learning has shown signiicant potential for enabling RL models to adapt to new tasks and evolving

environmental conditions, making it particularly suited for dynamic network control. However, achieving efective
generalization requires training on diverse tasks, which increases computational demands and complexity. As
a result, efective meta-learning often depends on access to varied training data and robust computational
resources. Transfer learning approaches, including action transformation frameworks, have also shown promise
in reducing the reality gap by aligning simulated actions with real-world counterparts. However, the success of
transfer learning relies on the similarity between simulated and real-world tasks. Task-sensitive methods that can
dynamically adjust to discrepancies between simulation and reality are necessary to ensure reliable performance
in real-world applications.

These insights underscore a central principle in Sim2Real research: successful model or policy transfer depends
on a balanced combination of robust, simulation-based training and iterative real-world adaptation. By integrating
simulated training with real-world feedback, these methods aim to bridge the reality gap, creating theoretically
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sound and practically efective models for real-world network control. Deploying RL models from simulation
to reality is inherently iterative, requiring continuous testing, feedback, and reinement. Field tests, real-time
feedback, and incremental adjustments help identify and address residual discrepancies. Establishing feedback
loops that update model parameters based on real-world outcomes enhances both efectiveness and stability,
reinforcing the model’s adaptability.

7 Open Challenges and Future Directions

Generative AI applications in NDTs represent a highly promising and rapidly evolving ield, which has garnered
substantial attention in recent years and led to signiicant achievements. However, despite these advances, various
challenges and unresolved issues remain that need further exploration. This section will delve into these open
challenges and outline potential directions for future research and development within this ield.

7.1 Latency and Synchronization in Network Digital Twins

Latency and synchronization are critical challenges in developing efective and reliable NDTs. Data collection from
distributed network elementsÐsuch as base stations, routers, and mobile devicesÐoften encounters signiicant
delays due to network congestion and bandwidth limitations [163, 164]. For an NDT to function efectively, it
must process this data in near real-time to ensure that its state accurately relects the current conditions of the
physical network. Moreover, latency may cause network elements to update their states at diferent rates [165].
Such inconsistencies can lead to a fragmented or incomplete view of the network, undermining the reliability of
the NDT for proactive applications.
AI for predictive synchronization ofers signiicant potential to address these challenges. Machine learning

models, particularly generative AI models trained on historical data, can predict and preemptively adjust to
luctuations in network states, efectively smoothing synchronization between the digital twin and the physical
network. By estimating future states, these predictive models enable the NDT to anticipate and compensate for
delays, enhancing its accuracy and responsiveness [166]. However, some predictive methods are large in size and
cannot be executed efectively on edge devices, such as base stations and mobile phones. In such cases, distributed
computing and edge-cloud integration provide promising solutions. Computationally intensive tasks can be
oloaded from resource-constrained edge devices to more capable cloud servers by combining edge computing
with cloud resources. For example, Nan et al. [16] proposed a general architecture selection framework that
optimizes the use of local processors, edge servers, and cloud servers for traic prediction in NDTs. This hybrid
approach facilitates eicient data processing while ensuring low-latency, synchronized updates within the NDT.

7.2 Dynamic Twins and Continuous Learning

Dynamic twins are essential in mobile networks due to the constantly evolving nature of network environments.
Managing these dynamic twins presents two principal challenges: real-time data uncertainty and the continuous
updating of digital models.

Data reliability in the fast-paced context of mobile networks often sufers from factors such as inconsistent data
quality and noise. This noise and uncertainty can signiicantly impact the performance of dynamic twins, making
accurate representation and prediction diicult. To address these issues, Kapteyn et al. [167] have suggested
employing probabilistic graphical models to represent uncertainty in real-time data. However, the performance
of these models is somewhat constrained by the limited capacity of Gaussian distributions to efectively model
multi-modal distributions. Thus, enhancing uncertainty modeling within generative AI is an important research
direction. This involves developing algorithms capable of comprehensively understanding and adapting to the
uncertain nature of network environments and data streams, enabling them to model complex multi-modal
distributions more efectively.

ACM Comput. Surv.



24 • T. Li et al.

Continuous learning is another critical research area for dynamic twins, particularly in updating digital models.
This concept entails that digital twins remain constantly learning and adapting, relecting real-time changes in the
physical network. Hashash et al. [168] have introduced an initial edge continual learning framework for simple
DNNs in mobile networks. However, a robust continual learning framework designed explicitly for generative
AI-driven dynamic twins, especially within large-scale and edge-cloud infrastructures, remains underdeveloped
and requires further exploration. Developing such frameworks will improve the adaptability and accuracy of
dynamic twins and enhance their ability to operate efectively in the complex, real-time environments typical of
modern mobile networks. Future research should focus on creating scalable, eicient algorithms that integrate
continuous learning mechanisms while managing uncertainty, ultimately leading to more resilient and reliable
NDTs.

7.3 Knowledge-informed Network Data Generation

Generative AI technology primarily employs a data-driven approach for modeling and generation. However,
this approach often struggles to account for scenarios not represented in the training dataset, leading to a lack
of generalizability. Therefore, there is a growing demand for knowledge-informed generative AI technology
research. This method is expected to enhance the generalizability and realism of models in complex environments
by incorporating extensive domain knowledge.

Knowledge can be represented in various forms, including algebraic and diferential equations, urban spatial
relations, logical rules, and expert insights. Generally, there are threemethodologies for integrating knowledge into
AI models: through input data, model structure, and loss function design. For example, Hui et al. [102] and Zhang
et al. [98] utilize urban knowledge graphs as conditional input data, depicting the spatial correlations between base
stations, regions, and business areas to improve the simulation of base station traic. Urban knowledge graphs
efectively capture urban spatial dynamics and semantic features. Additionally, Yuan et al. [74] apply Maslow’s
Hierarchy of Needs to model human decision-making processes, employing a hierarchical neural network
structure to relect diferent levels of human needs, thereby adding psychological realism to generative models.
Knowledge-informed generative AI technology is precious in wireless environment simulations with established
physical models. For instance, channel models can be accurately described using foundational physical equations,
such as Maxwell and Helmholtz equations. Jiang et al. [169] have integrated these equations into loss function
design for precise modeling of electromagnetic ields and wave propagation. Moreover, incorporating logical rules
that govern network protocols into generative AI models presents a promising avenue for enhancing network
packet generation. By embedding these rules, generative models can produce more realistic and contextually
appropriate network traic, improving the eiciency and reliability of simulations. This fusion of domain-speciic
knowledge with generative AI capabilities enhances simulation idelity and paves the way for various applications,
ranging from network design to management.

7.4 Large Pertained Model for Network Digital Twins

Generative Pre-trained Transformers (GPTs) have shown impressive generative capabilities in various domains.
However, no large-scale generative model is speciically tailored for the mobile network domain. This highlights
the need for a domain-speciic generative model designed for mobile networks, which is currently an unresolved
challenge. While eforts have been made to adapt the GPT framework to train a generative pre-trained transformer
for single-model network packet data [170], it is not enough. It is essential to understand that a general, large-scale
pre-trained model for mobile networks must efectively explore and model the multimodal characteristics of
network data, including spatiotemporal coupling and sequence correlations. Therefore, a large generative model
for networking should inherently be multimodal, aiming to generate and predict network spatiotemporal data
accurately. This includes elements such as base station traic, user trajectories, service behavior, and network
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performance. Such a multimodal large generative model would play a crucial role in simulating a network’s digital
twin. One promising approach could be to develop a multimodal difusion model for joint data generation coupled
with graph neural networks and transformers. This combination would be speciically designed to capture the
spatial and temporal correlations across diferent modalities of data.

7.5 Large Language Model Enhanced Network Data Generation

In recent years, Large Language Models (LLMs) have made remarkable strides, demonstrating the ability to
generate high-quality, coherent natural language text by learning from extensive corpora of textual data. For
instance, Bidirectional Encoder Representations fromTransformers (BERT) [171], developed byGoogle, introduced
a bidirectional approach that enables the model to understand the context of words from both directions. BERT’s
success in question answering, sentiment analysis, and natural language inference laid the groundwork for
subsequent models. Building on this, OpenAI’s GPT [172] employed a unidirectional transformer architecture
for text generation, with models like GPT-3 and GPT-4 excelling in content creation, chatbots, and language
translation. Following these innovations, Google developed the Pathways Language Model (PaLM) [173], which
powers Bard, their AI-driven conversational agent. PaLM enhances multilingual capabilities and reasoning,
making it practical for conversational tasks and complex applications like code generation. Meanwhile, Meta’s
Large Language Model Meta AI (LLaMA) [174] focuses on eiciency, designed to be smaller and faster than its
predecessors, thus broadening accessibility for research and development. Additionally, Falcon [175], developed
by the Technology Innovation Institute, provides a high-performing open-source alternative, delivering scalability
and competitive performance in tasks such as text generation and summarization.

Against this backdrop, the idea of applying text-based LLM techniques to network spatiotemporal data, with
the aim of facilitating network data generation through LLMs, has emerged as an innovative research avenue. One
promising approach is to harness the capabilities of LLMs in natural language processing to manage operational
log data within the mobile network domain. This would involve accurately interpreting user commands and
intentions. For example, Huang et al. [176] have introduced a framework that utilizes generative AI models to
discern user optimization intentions and automate network optimization. By analyzing and learning from a
vast array of language data, these models can efectively assist in understanding and predicting user intentions,
enabling more personalized and precise digital twin simulations for networks.

7.6 Causal Reasoning in Network Digital Twins

Causal inference techniques ofer signiicant beneits for NDTs by enabling more accurate simulations that
capture cause-and-efect relationships among network variables. Understanding these causal links is essential
in complex network environments where factors like traic load, latency, and resource allocation are closely
interconnected. For instance, when optimizing network conigurations, causal inference helps determine whether
performance shifts result from speciic adjustmentsÐsuch as bandwidth changesÐor merely the inluence of
varying user demands. Additionally, causal reasoning allows operators to trace network issues back to their
sources, enhancing the generalizability of solutions and models.
Various methodologies support the integration of causal reasoning into NDT frameworks. For example,

structural causal models (SCMs) are commonly used to represent cause-and-efect dynamics mathematically,
providing a foundation for inferring causal relationships within network systems [177]. SCMs enable NDTs to
simulate interventions and predict outcomes with greater precision. Another valuable tool is do-calculus, which
allows NDTs to examine the potential impacts of speciic changesÐsuch as traic low prioritizationÐwithin a
controlled virtual environment [178]. Initial studies [179] indicate that incorporating causal AI can reduce the
need for re-training by identifying more resilient and generalizable patterns within the data. Integrating causal
reasoning into NDTs is essential to achieving autonomous mobile networks.
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7.7 NDTs Towards Artificial General Intelligence-Native 6G Networks

Artiicial General Intelligence (AGI)-native networks are envisioned as a transformative framework for 6G
and beyond, designed to incorporate human-like cognitive abilities such as reasoning, planning, perception,
and common sense. These networks aim to move beyond handling predeined tasks, enabling them to adapt
to unforeseen scenarios and make context-aware decisions autonomously. Inspired by the Joint-Embedding
Predictive Architecture (JEPA) proposed by Yann LeCun, Walid Saad et al. [180] presented a framework for
AGI-native networks centered around a cognitive architecture composed of three key components: the Perception
Module, the World Model, and the Action-Planning Module. The Perception Module abstracts real-world elements
into generalizable representations, distilling essential features from complex network data. The World Model
functions as the network’s predictive engine, simulating and reasoning about potential future states based on
observed conditions, much like human anticipation of outcomes. Finally, the Action-Planning Module directs the
network’s responses and enables the network to adapt actions based on overarching goals (such as optimizing
resource allocation) or speciic objectives (like minimizing latency for critical services).
AGI-native networks are the ultimate evolution of NDTs. Traditional NDTs collect data from real-world

networks (analogous to the perception module), simulate network conditions to perform what-if analyses
(similar to the world model), and make control decisions to optimize network performance (a precursor to action
planning). However, while NDTs support predictive and adaptive capabilities, they lack the cognitive intelligence
fundamental to AGI-native networks. By embedding common sense, analogical reasoning, and lexible planning,
AGI-native networks extend NDT capabilities, allowing for autonomous adaptation to novel, out-of-domain
scenarios, predictive coniguration adjustments, and proactive resource management in complex, multi-agent
environments. This cognitive evolution positions AGI-native networks as foundational for advanced, autonomous
6G networks, capable of supporting complex applications such as real-time immersive metaverse experiences,
holographic teleportation, and cognitive avatars

7.8 Construction of Large-Scale Network Digital Twin Platform

Eicient computation is crucial when building a network digital twin platform for large-scale systems. Time is a
limiting factor for both network data and decision-making processes. Slow computation and feedback signiicantly
reduce the practical value of the twin platform. For large-scale urban-level mobile network twinning, which
involves thousands or even tens of thousands of small cells, traditional single servers are inadequate due to
the large number of computational tasks. It may require dozens or even hundreds of servers, so a cloud-based
computing platform that can provide high-speed, cost-efective, and scalable computing services is the best
solution. Regarding software and hardware design, Graphics Processing Units (GPUs) must be introduced in
addition to the traditional Central Processing Units (CPUs) for parallel acceleration. For instance, the GenNet [14]
network twinning platform improved up to 175 times by incorporating GPUs and CPU acceleration. Furthermore,
digital twin systems in mobile networks necessitate collecting vast amounts of data. This situation calls for the
design of advanced database management techniques tailored for eicient data compression and management.
To minimize data interactions and streamline the overall management process, one can study how to collect data
based on computational demands and updating frequencies.

7.9 Privacy and Ethical Considerations

The ethical, privacy, and security concerns associated with NDTs and generative AI technology are signiicant and
demand careful attention. Privacy is a primary concern due to the extensive data collection involved inNDTs. These
systems monitor real-time user behavior, creating privacy risks if sensitive data is exposed or misused. Compliance
with data protection regulations, such as GDPR [181], is essential to ensure users’ personal information remains
conidential and secure. Techniques like data anonymization and strict access controls are recommended to

ACM Comput. Surv.



Generative AI Empowered Network Digital Twins: Architecture, Technologies, and Applications • 27

protect personally identiiable information from unauthorized access. The application of generative AI in NDTs
also raises ethical concerns. Issues like bias in AI algorithms, transparency, and accountability are critical, as
these systems may inadvertently prioritize certain network conigurations, potentially disadvantaging speciic
user groups or regions. Ensuring fairness and accountability in AI decision-making is essential, especially in
applications like public service networks, where the impact on users can be profound. Security risks are also
prevalent, as attacks targeting the digital twin infrastructure could lead to unauthorized access to network
conigurations, resulting in data breaches or network disruptions. Robust security measures such as encryption,
multi-factor authentication, and real-time anomaly detection are crucial to mitigate these risks. By addressing
these ethical, privacy, and security considerations, NDT developers and operators can promote a more secure
and responsible deployment of digital twins in network environments.

8 Conclusion

In this paper, we present a comprehensive survey on generative AI-empowered NDTs from various perspectives.
We begin with an introduction to the ‘Two-Domain, Four-Step, Dual-Loop’ architecture of NDT and briely outline
how generative AI can empower NDTs. Following this, we systematically review recent advancements within the
four steps of this architecture: data processing and networkmonitoring, digital replication and network simulation,
the design and training of network optimizers, and Sim2Real transition and network control. Speciically, in the
data processing and monitoring phase, generative AI plays a crucial role in inferring missing data and detecting
anomalies. During the digital replication and simulation stage, the simulation of network behaviors and what-if
analyses signiicantly improves by generating various network data. In the phase of designing and training
network optimizers, generative AI aids in the development of control strategies and enhances optimization
performance through difusion models in reinforcement learning. In the Sim2Real transition and network control
stage, generative AI efectively narrows the divide between digital simulations and real-world network operations,
facilitating a seamless transition of network strategies from simulation to practical implementation. Finally, we
conclude the paper with a discussion on the pressing challenges and future research directions in the ield of
generative AI-empowered NDTs.
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A Appendix

A.1 NDTs, Digital Twin Networks, and Metaverse

NDTs and Digital Twin Networks refer to distinct concepts within digital twin technology. NDTs are virtual
replicas of physical communication networks designed to simulate, monitor, and optimize network performance
in real time. In contrast, digital twin networks [44, 182] are speciically designed to interconnect multiple
digital twins across various domains, such as transportation, healthcare, and manufacturing. This infrastructure
supports real-time data exchange, interoperability, and coordinated operations, facilitating integrated industry
decision-making. While NDTs focus on optimizing speciic communication networks, digital twin networks
create the framework for linking and synchronizing multiple digital twins, enabling cross-domain collaboration
and functionality.

NDTs can signiicantly enhance digital twin networks by providing reliable, real-time simulations and optimized
network performanceÐboth crucial for interconnected virtual environments. With real-time monitoring and
predictive maintenance capabilities, they help sustain seamless interactions for large numbers of users who depend
on stable network functionality. Within digital twin networks, NDTs facilitate integrating and synchronizing
multiple digital twins across diverse domains, such as smart cities and industrial IoT ecosystems. Simulating
complex network interactions ensures eicient, secure, and reliable data exchange between interconnected digital
twins. Additionally, NDTs can leverage generative AI to dynamically adapt to evolving digital twin network
demands, supporting scalable, lexible, and optimized infrastructures that can expand to accommodate new
applications and domains as they arise.
The metaverse [183] is also a virtual, interactive space where users engage in immersive experiences such

as gaming, socializing, and learning through VR and AR technologies. Unlike NDTs, which operate behind the
scenes to maintain high-quality network performance, the metaverse ofers user-centric virtual worlds. NDTs
can enhance the metaverse to deliver low-latency, high-bandwidth connectivity for applications like virtual
reality, live events, and interactive simulations. Generative AI further ampliies this capability by enabling rapid,
adaptive data generation, allowing digital twins to scale eiciently and relect changing network conditions in
real-time. Additionally, AI-driven digital twins facilitate continuous learning, enabling metaverse environments
to evolve alongside their physical counterparts. Despite challenges like data privacy and computational demands,
integrating NDTs with the metaverse holds signiicant promise for creating seamless, intelligent, and interactive
virtual worlds.
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A.2 VAE, GAN, Difusion, and AR

Variational Autoencoder (VAE) [184]: A VAE comprises two core components: an encoder and a decoder.
The encoder transforms input data into latent variables, capturing the mean and standard deviation of these
variables. The decoder then utilizes the latent variables to generate new data. The system is trained to minimize
the diference between the original and generated data. VAE operates on an unsupervised learning basis and
generates data by sampling from its learned probability distribution.

Generative Adversarial Networks (GANs) [185]: A GAN consists of two principal components: a generator
and a discriminator. The generator generates data that resembles the original, utilizing random values drawn from
a normal distribution. Its objective is to generate realistic data that can deceive the discriminator. Conversely, the
discriminator’s function is to distinguish between real data and the synthetic data produced by the generator.
During the training process, a continuous competitive interaction occurs between these two models. The interplay
between these two models enhances their individual capabilities and contributes to the overall efectiveness and
reliability of the GAN framework in replicating realistic data.

Difusion Models [186]: Difusion models consist of forward and reverse difusion processes. In the forward
difusion phase, they utilize a Markov chain process to progressively add noise to the input data, transforming it
into white noise that aligns with the standard normal distribution. The reverse difusion process methodically
removes the noise to reconstruct the original data. The difusion model, resembling a specialized multi-layer
VAE (Hierarchical VAE) network, features high-dimensional hidden variables. These high-dimensional variables,
relecting the distributions of the original data, are learned using a ixed procedure, facilitating the construction
of the desired data sample from noise.

Autoregressive Models (AR) [187]: Autoregressive (AR) models work by representing the joint probability
distribution of a data vector in high-dimensional space as a product of a series of conditional probability
distributions. In simpler terms, these models generate data points sequentially, starting with the irst component
and using the previously generated components to determine the next. This process continues until all components
of the sample are generated. Notably, most large language models (LLMs) use the AR framework as their backbone.
Each word in LLMs is generated based on the preceding words, resulting in coherent and contextually accurate
text generation.

A.3 Literature Review Tables

Received 5 January 2024; revised 31 October 2024; accepted 24 December 2024

ACM Comput. Surv.



Generative AI Empowered Network Digital Twins: Architecture, Technologies, and Applications • 37

Table 3. Literature review in data processing and network monitoring with generative AI.

Topic Ref. Model Name Main Modules Key Design

Network Data

Collection

[47]

[48]

MR Network interface State information from network elements is gathered through multiple

network interfaces

[49] MDT Device probe, SDK Data is collected directly from user devices

[50] Twinport Drone sensor Use drones to capture environmental data

Network Data

Imputation

[51] SDAi Denoising autoen-

coder

Process various data types using a stacked denoising autoencoder for

computational eiciency.

[52] MMDL Autoencoder Use two parallel stacked autoencoders simultaneously considering spatial

and temporal dependencies

[53] GAIN GAN, MLP Generator imputes the missing components and discriminator deter-

mines which components were imputed

[54] CSDI Difusion, Trans-

former

Missing time series generated to be conditioned on observed data

Network Data

Anomaly Detec-

tion

[56] - YANG, AutoFS Use an online learning approach to update themodel instantly to improve

detection accuracy

[59] LATTICE Curriculum learning Use a curriculum learning method to address discrepancies between

historical and real-time data in DT systems

[61] Net-GAN, Net-

VAE

GAN, VAE, RNN Discover the underlying distribution of normal operating state and iden-

tify potential anomalies without the need for labeled data

[62] ADT-GAN GAN, Transformer Use the prior knowledge of time sequences’ overall associations to recog-

nize anomalies through sequence associations and reconstruction errors

[63] LogFiT BERT Leverage a pretrained BERT-based language model, ine-tuning it to

comprehend the linguistic structure of network system logs

ACM Comput. Surv.



38 • T. Li et al.

Table 4. Literature review in modelling mobile user behaviour with generative AI.

Topic Ref. Model Name Main Modules Key Design

Individual

Mobility

[67] TS-RNN RNN, AR Consider population distribution by taking <home, work> pairs as input

[68] DeepMove AR, LSTM Leverage periodic patterns of mobility

[69] TrajGAN GAN, LSTM Use DeepWalk to pre-train location embedding

[70] OuyangGAN GAN, CNN Discretize locations into a two-dimensional matrix

[71] TrajGen GAN, Seq2Seq Separate spatial and temporal information

[72] MoveSim GAN, Attention Introduce the prior knowledge of urban structure to generate a mean-

ingful trajectory

[73] PateGail GAN, Imitation

learning

Model individual movement as a human decision-making process

[74] SAND GAN, Policy func-

tion

Integrate Maslow’s need theory into human decision-making process

[75] VOLUNTEER VAE, Transformer Model user distributions

[76] TrajSynVAE VAE, LSTM Use temporal point process to model continuous temporal distribution

[77] ControlTraj Difusion Model,

U-Net

Integrate Wide and Deep networks to construct conditional information

[78] DSTPP Difusion Model,

Attention

Capture the interdependence of trajectory time and space

Crowd Mobility

[79] Collective Mobility

Model (CMM)

Statistical model Highlight the fractal-like urban morphologies and scaling laws in city

growth patterns

[80] Migration Dynamics Physical model Consider diferent mechanisms in migration dynamics

[81] SIRS Physical model Incorporate panic stress into the desired velocity

[82] PanicRoute Physical model Model irrational routing decisions

[83] Volume control Physical model Treat evacuees as luid particles in luid low

[84] ResNet-SICS Residual network Scene-independent crowd simulation

[85] GSTE-DF GNN Capture dynamic spatial-temporal features

[86] GNS GNN Use a heterogeneous graph to model interactions among people and

environment

[87] PIML GNN Combine physics and neural network models through iterative learning
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Table 5. Literature review in modeling network services with generative AI.

Topic Ref. Model Key Design

Mobile App usage

[90] U-net Extract latent features from application transactions

[91] VAE & Transformer Generate application sequences using installation, uninstallation and snapshot

information

[92] Codec & Knowledge graph Enrich user embedding with timestamp, location and society association for next

intention prediction

[96] GAN & Knowledge graph Generate high-quality synthetic swiping modality samples for authentication

[97] WGAN & CNN Utilize WGAN to generate raw motion data

Network traic

generation

[100] GAN & CNN Extract traic features in both time and frequency domains to generate network

data.

[101] GAN & CNN Construct city-scale network traic low using mobile traic and spatial context

information.

[102] GAN & LSTM Extract multi-periodic traic patterns and uses urban knowledge graphs to capture

urban structure.

[98] GAN & GNN Align base station representations between target and source cities through urban

knowledge graphs.

[103] GAN Generate network packet traces trained on packet-level data.

[104] Hierarchical GAN Generate both packet attributes and feature series concurrently.

[105] Conditional GAN Tackle the issue of data imbalance in datasets containing various traic types

using conditional GANs.

[106] Difusion Model Transform time-series data into 2D images to capture temporal correlations, using

pretrained models to generate traic traces.

[107] Transformer-based Difu-

sion Model

Incorporate users’ app usage intent as a condition to model complex relationships

between network low features.

Network topol-

ogy embedding

[109] GAN Extracte latent similarity of nodes in attributed network for link prediction and

clustering

[110] GAN & GCN Construct node latent vector via self and neighbour feature in network embedding

[111] Hierarchical GAN Add competitor during latent extraction process to realize precise network em-

bedding

[112] WGAN & LSTM Utilize GCN to incorporate topology latent feature into network embedding for

link prediction

[113] Autoregressive Extract node latent features to implement network topology under missing nodes

[114] GAN & GCN Network embedding for end-to-end latency estimation in network slicing.

ACM Comput. Surv.



40 • T. Li et al.

Table 6. Literature review of wireless environment simulation.

Topic Ref. Method Data Scenario Frequency Bandwidth

Channel model-

ing/estimation

[188] GAN Simulation, 3GPP TDL,

MATLAB

- 4GHz 30.72MHz

[115] GAN Simulation, CDL-C - 3.5GHz 10MHz

[116] GAN Simulation, Raytrac-

ing, Wireless InSite

Urabn region 28GHz,

140GHz

-

[118] VAE Simulation, Raytrac-

ing, Wireless InSite

UAV to ground 28GHz -

[119] Difusion model Simulation CDL fam-

ily

- 40GHz -

[120] Difusion model Simulation 3GPP TR

38.901

Urban Macro

Urban Micro

2GHz -

Radio map estimation

[121,

122]

GAN Simulation, Raytrac-

ing, WinProp

Urban region 5.9GHz 10MHz

[123] GAN Simulation, Raytrac-

ing, Wireless InSite

Urban region 900MHz -

[124] VAE Real-world dataset Urban region - -

[125] Difusion model Simulation, Ray-

tracing, Ranplan

Professional

Indoor 2.4GHz -
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Table 7. Literature review in designing and training reinforcement learning for NDTs.

Category Ref. Algorithm Scenario State Action Reward Agent

SARL

[129] DDQN Data oloading CSI, connection state, chan-
nel gain

Resource alloca-
tion action

Power consump-
tion and network
latency

Network co-
ordinator

[130] AC Data oloading Environment features Node and link em-
bedding

LAR, ACCR Network co-
ordinator

[131] CL-MAB Coverage optimiza-
tion

Network conditions Electrical antenna
tilt

Coverage and ca-
pacity

Base station

[132] PPO Rate control Location state and network
state

Next-hop adja-
cent node selected

Bandwidth, delay,
packet error rate,
packet loss

SDN

[133] SARSA Energy management Sleep mode level, packet
bufer load

Whether to be
awake

QoS and packet
bufer load

Network
controller

MARL

[135] Tactic-
interactive
MARL

Resource allocation Channel conditions, inter-
ference levels, age of infor-
mation

Transmission
power, sub-band
allocation

QoS Vehicle

[136] MARL-
DDQN

Resource allocation Channel state, interferenc Power levels,
spectrum re-
sources

Spectrum ei-
ciency

Vehicle

[137] MA-DDQN Power allocation Channel state, interference,
transmission load

Transmission
power, sub-band
allocation

V2I link capacity,
V2V throughput

V2V link

[138] Federated
multi-agent
DRL

Resource allocation Channel state, available re-
sources

Frequency band
selection, power
allocation

QoS Vehicle

Safety RL

[139] Primal-dual
policy gradi-
ent

Resource Allocation Fading and control state Power control Keep operating
around a point

Base station

[140] DQN Trajectory design of
multi-UAV

Location information and
ID

Direction Downlink capac-
ity

UAV

[141] P3O Resource allocation,
power control

Location information, traf-
ic demands

Resource usage,
power

Satisfaction ratio Mobile
users

Difusion
for RL

[144] Difusion
model

Power allocation Channel state Power control Sum rate Mobile
users

[34] AI-generated
power alloca-
tion

Power allocation Channel state, number of
objects in semantic commu-
nication

Power Transmission
costs

Objects

[145] AGOD Service provider se-
lection

Availability of resource Resource usage User experience Mobile
users
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Table 8. Literature review in Sim2Real transition and network control.

Method Ref. Application Simulator Real Platform Policy Optimization

Method

Domain

Randomization

[147] Dynamic motion

planning

MuJoCo Darwin-OP hu-

manoid

Levenberg-Marquardt

[148] Blind bipedal loco-

motion

MuJoCo bipedal robot

Cassie

PPO

System

Identiication

[153] Robotic arm control Flex Yumi robot PPO

[154] Legged Locomotion RaiSim A1 robot PPO

[155] Robot Sliding MuJoCo UR10 robot CEM

Meta RL [159] Locomotion MuJoCo legged millirobot MPC

Transfer

Learning

[160] Arm Swings MuJoCo Physical Fetch ro-

bot

TRPO

[161] Bipedal robot walk-

ing

Gazebo,

SimSpark

Softbank NAO Ro-

bot

ES

[162] Robotic arm control MuJoCo Jaco A3C
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