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Abstract

Today, due to the increasing environmental hazards and governmental regulations, as well as the 

limitation of sources of production, researchers have paid special attention to the design of closed-

loop green supply chain networks. The closed-loop supply chain networks (CLSCN) include the 

returns processes and the producers aim to capturing additional value considering further 

integration of all supply chain activities. Therefore, all return processes need to be optimized as 
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well as considering environmental impacts leading to form a closed-loop green supply chain 

network (CLGSCN). For decision making purposes, operational and tactical decision making 

levels are integrated to configure a coordinated supply chain network aiming to maximize profit 

while keeping environmental-friendly policies. The case is more sophisticated in melting 

industries where the collection and categorization in return process and different environmental 

challenges should be considered at the same time. Thus, in this paper, a CLGSCN of a melting 

industry is modeled with respect to environmental hazards to optimiza overall profits.  Since real-

world demand in melting industry under study is uncertain, the robust optimization has been 

employed, and while the optimization of the proposed mathematical model is time consuming, an 

improved version of the genetic algorithm has been implemented as a solution method. This study 

has been carried out at Melting Imen Tabarestan (MIT) company in Iran. The proposed model 

along with the solution method are investigated in the case study. The results imply the 

effectiveness and applicability of the model and provide tactical considerations for the managers 

and practitioners. 

Keywords: Robust optimization; genetic algorithm (GA); closed-loop green supply chain 

networks (CLGSCN).

1. Introduction

The closed loop supply chain involves designing, controlling and implementing a system to 

maximize the value created over the lifetime of the product, by generating a dynamic value of the 

various returning products over time (Govindan et al., 2015). 

Reducing harmful environmental impacts was considered as a major goal in the supply chain. The 

carbon dioxide emission index is extensively considered to determine environmental impacts 
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which can be used during the supply chain environmental modeling. Many indicators have also 

been investigated in the study of environmental impacts including energy consumption, solid 

waste, water consumption, and waste water. These indicators are analyzed in an article by Ahi and 

Searcy (2015). Borumand and Rasti-Barzoki (2019) studied greening, pricing, and advertising 

policies in a supply chain with government intervention. The supply chain had two elements of a 

manufacturer seeking to determine the wholesale price and the greening level and a retailer that 

has to determine the advertising cost and the retail price. Green supply chain is closely influenced 

by the type of production system being very significant to try to reduce the carbon impact in 

melting related industries.

The design of a closed loop supply chain is a problem that has attracted much attention in recent 

years. In general, most of the interesting researches considered single goal, which mainly involves 

minimizing fixed costs of launch, operation, and transportation. Also, optimization approaches 

employed in the literature for closed loop or green supply chains included both certain and 

uncertain namely, stochastic programming, robust optimization, genetic algorithm, hybrid particle 

swarm-genetic algorithm and other metaheuristics.  A summary of the literature review is given in 

Table 1. In closed loop supply chain it is important to provide profit for the system while 

controlling costs. In the literature mostly cost managemet was targeted since in nowadays 

comptetive mark profit is more attractive. 

Table 1. Summary of literature review

Researchers Problem Objective Solution approach
Pishvaee et al. (2010) Reverse multilateral 

logistics network
Minimize shipping 
costs and fixed setup 
costs

simulated annealing

Pishvaee et al. (2011) Reverse logistics 
network

Minimize cost and 
maximize response 
levels

mimetic multipurpose 
algorithm
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Alshamsi and Diabat 
(2015)

Reverse logistics Minimize costs Mathematical 
optimization

Pishvaee et al. (2012) Closed loop supply 
chain

cost minimization Possibilistic 
programming

Abdallah et al. (2012) Closed loop supply 
chain

carbon emission 
minimization

Amin and Zhang (2013) closed-loop supply 
chain network

Facility location Uncertain mathematical 
optimization

Ahi and Searcy, (2015) green and sustainable 
supply chains

environmental factors Performance 
measurement

Diabat and Al-Salem 
(2015)

integrated supply chain 
problem

environmental 
considerations

Mathematical 
optimization

Diabat (2016) capacitated facility 
location and inventory 
management

Single sourcing Mathematical 
optimization

Al-Salem et al. (2016) closed-loop supply 
chain management 
problem

Cost optimization Reformulation and 
piecewise linearization

Diabat and Theodorou  
(2015)

location–inventory 
supply chain problem

Cost optimization Reformulation and 
piecewise linearization

Govinden et al. 
(2015)

Reverse logistics and 
closed-loop supply 
chain

Multiple objectives Deterministic models

El-Sayed et al. (2010) forward–reverse 
logistics

Risk optimization stochastic model

Pishvaee et al. (2012) green logistics Cost optimization Credibility-based fuzzy 
mathematical 
programming

Ramezani et al. 
(2013)

forward/reverse logistic 
network

Cost optimization multi-objective 
stochastic model

Soleimani and 
Govindan, (2015)

closed-loop supply 
chain network

Cost optimization hybrid particle swarm 
optimization and 
genetic algorithm

Santibanez-Gonzalez 
and Diabat (2013)

reverse supply chain Cost optimization improved Benders 
decomposition

Diabat and Deskores, 
2016)

integrated supply chain Cost optimization hybrid genetic 
algorithm based 
heuristic

Alshamsi and Diabat, 
(2017)

Reverse Logistics Cost optimization Genetic Algorithm

Hiassat et al. (2017) location inventory- 
routing problem

Routing cost genetic algorithm

Zohal and Soleimani, 
(2016)

green closed-loop 
supply chain

Cost optimization ant colony

Wang et al. (2016) closed-loop supply 
chain

Cost optimization cross-entropy

Kumar et al. (2014) forward/reverse supply 
chain

Forecasting return 
products

ANFIS
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Software packages like Lingo and GAMS and programming environments such as CPLEX and 

MATLAB were mostly used for implementing optimization approaches to obtain solutions. But, 

optimization software was mostly used for small echelon or scale problems (El-Sayed et al. 2010; 

Wang et al. 2013; Özkir and Basligil, 2013; Soleimani et al. 2013). Scenario-based planning under 

uncertainty was handled using decomposition techniques or exploratory algorithms. This robust 

modeling technique is aimed at producing feasible and optimal solutions for the worst control 

parameters to achieve  the goals (Ramezani  et al. (2013). Uncertainty is inevitable in real industrial 

systems specifically in the current comptetive market where systems face with various 

circumstances that should interact and decide so that to keep the system active and obtain economic 

advantages.

In summary the main focus of the reviewed past researches are listed below:

 Most of the researches considered single product closed loop supply chain but many multi-

product manufacturing systems fail in configuring a comprehensive green closed loop 

supply chain;

 Cost optimization was a main objective function considered in past works, while in the 

tactical level decision making the profit is significant;

 The quality of the products was considered almost the same  while in the reality the quality 

of products can not be same;

 Uncertainty was considered on specific parameters and not a comprehensive model based 

on scenarios;

 Using genetic optimization algorithm was very common in the published papers but all of 

them used the standard form despite different problems have various setting of parameters.
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The contributions of this paper can be roughly summarized as follows:

 The concept of grading for multi-product closed loop supply chain is firstly considered.

 The model is solved by using the modified genetic algorithm. It is then updated with a 

robust optimization approach to obtain a faster and more reliable solution. Seriously, at the 

beginning of the original algorithm, a local search has been developed that can produce 

optimal solutions faster. In fact, the comparison between the results is expressed.

 The proposed genetic algorithm in this work is slightly different from other studies in the 

literature. The initial population is produced in a way that many of the constraints are met 

based on a heuristic generation of feasible solutions. Therefore, this can help the genetic 

algorithm to be more agile in iterations and generating populations.

 The goal is to maximize profits in the network having a melting process in a reverse flow. 

The proposed model is for a multi-level closed loop green supply chain, on the other hand, 

the new multi-product approach makee this study more practical.

In the next section, the problem is formulated. Section 3 explains solution approach. Section 4 

presents a numerical implementation to illustrate the effectiveness of the proposed model and to 

analyze the results. More analysis and managerial implications are give nin Secton 5. We conclude 

in Section 6.

2. Statement of the problem and mathematical formulation

The problem under study consiers a closed-loop supply chain in which the reverse process triggers 

to collect products so that to increase the total profit. The elements in forward flow are suppliers 
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of raw materials, manufacturers, distributors and customers. In the reverse flow collection centers, 

disassembly centers and disposal centers are considered. The significance is to keep 

environmental-friendly ploicies in all processes of the proposed closed-loop green supply chain 

network. The specific industrial case of melting company is considered. 

The supply chain begins with the provision of raw materials from suppliers. It is assumed that all 

stages of production are within the organization and are carried out within the desired production 

centers. Finally, the products are sent to the customers. In the reverse flow of the proposed network, 

products purchased by customers and depreciated at their end of use stage; and the returned 

products due to deficiencies both are collected and transferred to disassembly centers. The 

inspection and separation are performed to categorize the reverse products into usable and useless. 

The usable products are the ones which can be reused with respect to the appropriate quality and 

the manufacturing level of the original product. These products are transferred to the production 

centers for refurbishment. The useless products are the ones that can not be used anymore and 

considered as wastes to be transferred to disposal centers. The case study of this paper is a melting 

industry that the CLGSCN and the proposed mathematical model are developed accordingly.  

Melting of metals, glass, and other materials has been a vital manufacturing process for several

thousand years, producing molten liquids that can be poured and solidified into useful shapes.

Although the basic process continues to be the same, the utility of cast products has come a long

way. 

The melting of any industrial metal used in manufacturing involves the following steps:

1. Preparing the Metal and Loading – removing dirt and moisture and sometimes, preheating the 

charge material, such as scrap metal or ingot; and introducing solid charge into the furnace system;
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2. Melting the Metal – supplying energy from combustion of fuels, electricity or other sources to 

raise the metal temperature above its melting point to a pouring temperature;

3. Refining and Treating Molten Metals – introducing elements or materials to purify, adjust 

molten bath composition to provide a specific alloy chemistry and/or affect nucleation and growth 

during solidification;

4. Holding Molten Metal – maintaining the molten metal in molten state until it is ready for 

tapping;

5. Tapping Molten Metal – transferring the molten metal from the furnace to transport ladle;

6. Transporting Molten Metal – moving the molten metal to the point of use and keeping the metal 

in molten state until it is completely poured.

Material and energy losses during these process steps represent inefficiencies that waste energy

and increase the costs of melting operations. Modifying the design and/or operation of any step

in the melting process may affect the subsequent steps. It is, therefore, important to examine the

impact of all proposed modifications over the entire melting process to ensure that energy

improvement in one step is not translating to energy burden in another step.

In the reverse flow, collected materials are sent to the disassembly center and then the six steps of 

melting are performed. The remainder is also sent to the disposal center. To kepp the environment 

green it is necessary to recycle the materials have more side effects on the environment with higher 

priority. This way, metal melting is aimed here. A configuration of the CLGSCN in a melting 

industry embedded with the six steps of melting process is depicted in Figure 1.
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Suppliers Manufacturers Distributors 

Customers 

Collection centerDisassembly center

Disposal 

Figure 1. The configuration of the proposed CLGSC 

As shown in Figure 1. The forward flow is composed of suppliers, manufacturers, distributors and 

finally customers that forms a supply chain network. In the reverse flow, on the other hand, in the 

collection center the returned products are collected and then classified, and then in the 

disassembly center the parts are separated and forwarded to the six step melting process. The 

output is sent to the manufacturing center for reprocessing. Also, the remainders are sent to 

disposal center.

According to the melting process in the reverse flow and the materials supplied by the suppliers in 

the forward flow, two types of products are produced by manufacturers namely grade 1 and 2. 

Grade 1 products are reffered to the one that are produced by the materials supplied by the suppliers 

and grade 2 are composed of materials that are inserted from the melting process in the reverse 

flow.  
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The following assumptions are considered to formulate the mathematical model:

 The customers’ demands are uncertain; 

 Deficiencies are not allowed;

 The location of facilities is known and fixed;

 The flow of products, parts, and materials can only occur between two successive supply 

chain layers. The flow of products between similar facilities is not possible;

 The operations of the proposed CLGSCN are performed under capacity constraints; 

 The cost of adjusting a  facility is considered as a part of its operational cost;

 The inspection and separation costs are considered at the disassembly center.

With respect to the problem definition and assumptions explained above, the mathematical 

notations are presented in Table 2. 

Table 2. Mathematical notations of the proposed CLGSCN

Index

𝑀 Piece of product set                  𝑀 = 1, …, 𝑚

𝑞 Quality set      𝑞 = { 1                         𝑃𝑖𝑒𝑐𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑟𝑒𝑢𝑠𝑎𝑏𝑙𝑒 
2           𝑇ℎ𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑠𝑡𝑒 𝑃𝑖𝑒𝑐𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑇 Period set                   𝑇 =  1, …, 𝑡

𝑅 Raw material set        𝑅 =  1, …, 𝑟

𝐼 Suppliers set               𝐼 = 1,…,𝑖

𝐷 Distributors set             𝐷 = 1,…,𝑑

𝐽 Manufacturers (producerc)  set       𝐽 = 1,…,𝑗

𝐶 Collecting centers set    𝐶 = 1,…,𝑐

𝑃 Disassembly centers set    𝑃 = 1,…,𝑝

𝐹 Disposal centers set        𝐹 = 1,…,𝑓
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𝐿 Customers set                𝐿 = 1,…,𝑙

 Parameters

𝑃𝑟𝑟𝑖𝑗𝑡 The cost of purchasing raw materials  from the supplier  for the production center  in the period 𝑟 𝑖 𝑗 𝑡

𝑃𝑀𝑚𝑖𝑡 The cost of producing a Piece of product m in the  production center during period 𝑗 𝑡

𝐻𝑀𝑗𝑡 The cost of assembly of the product at the  production center in the period 𝑗 𝑡

𝑜𝑝𝑐𝑘𝑡 Operational cost of distribution center  in period 𝑘 𝑡

𝑃𝐵𝑡 The cost of purchasing a returning item from the customer at the collection centers in the period 𝑡

𝑃𝐶𝑝𝑡 Operational cost of the  disassembly center during the period t for each unit of return product𝑃

𝑃𝐷𝑓𝑡 The operating cost of the disposal center  for each product in period𝑓  𝑡

𝑇𝐶𝑖𝑗𝑟𝑡

The cost of the transferring raw materials  from the supplier  to the production center  during the   𝑟 𝑖 𝑗

period 𝑡

𝑇𝐶𝑗𝑘𝑡

The cost of transferring each product unit from the production center  to the distribution center  in 𝑗 𝑘

period 𝑡

𝑇𝐶𝑘𝑙𝑡
The cost of transferring each product unit from the distribution center  to the customer  during period 𝑘  𝑙

𝑡

𝑇𝐶𝑐𝑝𝑡

The cost of transferring each unit of returned product from the collection center  to the disassemble 𝑐

center p in period 𝑡

𝑇𝐶𝑝𝑗𝑚𝑡

The cost of transferring each Piece of product unit m from the center of disassemble  to the production 𝑝

center  in period 𝑗 𝑡

𝑇𝐶𝑝𝑓𝑚𝑡

The cost of transferring a unit of product m from the center of the disassemble  to the disposal center 𝑃

 during period 𝑓 𝑡

𝐷𝑒1𝑙𝑡 Customer demand for the first grade product in the period 𝑡

𝐷𝑒2𝑙𝑡 Customer demand for the second grade product in the period 𝑡

𝛼𝑙𝑡 The return rate of first grade product used by the customer  in the period 𝑙 𝑡

𝛽𝑙𝑡 The return rate of second grade product used by the customer  in the period 𝑙 𝑡

𝜇𝑚𝑟 The rate of using the raw material  in the Piece of product 𝑟 𝑚

𝑄𝐹1𝑙𝑡 The selling price of the first-grade product to the customer  in the period  𝑙 𝑡
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𝑄𝐹2𝑙𝑡 The selling price of the second-grade product to the customer  in the period 𝑙 𝑡

𝐵𝑖𝑔𝑀 A big number

𝐶𝑎𝑝𝑖𝑟 The supplier  capacity  to supply raw materials 𝑖 𝑟

𝐶𝑎𝑝𝑗 Production capacity at the production center 𝑗

𝐶𝑎𝑝𝑘 Capacity of distribution center 𝑘

𝜑𝑡 The rate of return of reusable parts from melting process at the disassemble center in period 𝑡

𝛾𝑚 The use rate of piece m in the product

Decision variables

𝑋𝑟𝑖𝑗𝑡 The amount of raw material  delivered from the supplier i to the production center  in period 𝑟  𝑗 𝑡

𝑋𝑚𝑗𝑡 The amount of the first-grade piece of product of type  produced at the production center  in period  𝑚 𝑗 𝑡

𝑋1𝑗𝑘𝑡

The amount first-grade product produced at the production center  and shipped to the distribution 𝑗

center k in period 𝑡

𝑋2𝑗𝑘𝑡

The amount second-grade product produced at the production center  is shipped to the distribution  𝑗

center  in period 𝑘 𝑡

𝑋1𝑘𝑙𝑡

The quantity of the first-grade product that shipped from the distribution center  to customer  during 𝑘 𝑙

period 𝑡

𝑋2𝑘𝑙𝑡

The quantity of the second-grade product that shipped from the distribution center  to customer  𝑘 𝑙

during period 𝑡

𝑋𝑙𝑐𝑡 The amount of returned  product shipped from customer  to the collection center  in period 𝑙 𝑐 𝑡

𝑋𝑐𝑡

The total amount of returning product available at the collection center  that is shipped to the 𝑐

disassembly center in period 𝑡

𝑋𝑚𝑝𝑗𝑞𝑡

The amount of the product m which is of  quality and is reusable and shipped from the center of 𝑞 =  1

disassembly  to the  production center during period .𝑝  𝑗 𝑡

𝑋𝑚𝑝𝑓𝑞𝑡

The amount of the product , which is of  quality, and considered as wastes to be shipped from 𝑚 𝑞 =  2

the center of the disassembly  to the disposal center  at period𝑝 𝑓  𝑡

𝑌𝑙𝑐 1, If the collection center  collect the returned product from customer   is open, otherwise𝑐 𝑙

𝑈𝑘𝑙 1, If the distribution center  served customer , otherwise 0𝑘 𝑙
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The formulations of the problem follows here.

Objective function and constraints:

𝑚𝑎𝑥 = ∑
𝑘,𝑙,𝑡

𝑋1𝑘𝑙𝑡𝑄𝐹1𝑙𝑡 + 𝑋2𝑘𝑙𝑡𝑄𝐹2𝑙𝑡 ― ∑
𝑟,𝑗,𝑖,𝑡

𝑋𝑟𝑖𝑗𝑡𝑃𝑟𝑟𝑖𝑗𝑡 ― ∑
𝑚,𝑗,𝑡

𝑋𝑚𝑗𝑡𝑃𝑀𝑚𝑖𝑡 ― ∑
𝑗,𝑘,𝑡

𝐻𝑀𝑗𝑡(𝑋1𝑗𝑘𝑡 + 𝑋2𝑗𝑘𝑡)

― ∑
𝑘,𝑙,𝑡

𝑜𝑝𝑐𝑘𝑡(𝑋1𝑘𝑙𝑡 +𝑋2𝑘𝑙𝑡) ― ∑
𝑙,𝑐,𝑡

𝑋𝑙𝑐𝑡𝑃𝐵𝑡 ― ∑
𝑟,𝑤,𝑠,𝑣,𝑡

𝑋𝑐𝑡𝑃𝐶𝑝𝑡 ― ∑
𝑝,𝑓,𝑚,𝑡

𝑃𝐷𝑓𝑡𝑋𝑝𝑓𝑚𝑞2𝑡 ― ∑
𝑟,𝑗,𝑖,𝑡

𝑋𝑟𝑖𝑗𝑡𝑇𝐶𝑟𝑖𝑗𝑡

― ∑
𝑗,𝑘,𝑡

𝑇𝐶𝑗𝑘𝑡(𝑋1𝑗𝑘𝑡 + 𝑋2𝑗𝑘𝑡) ― ∑
𝑘,𝑙,𝑡

𝑇𝐶𝑘𝑙𝑡(𝑋1𝑘𝑙𝑡 +𝑋2𝑘𝑙𝑡) ― ∑
𝑝,𝑐,𝑡

𝑋𝑐𝑡𝑇𝐶𝑝𝑐𝑡 ― ∑
𝑝,𝑗,𝑚,𝑡

𝑇𝐶𝑝𝑗𝑚𝑡𝑋𝑝𝑗𝑚𝑞1𝑡

― ∑
𝑝,𝑓,𝑚,𝑡

𝑇𝐶𝑝𝑓𝑚𝑡𝑋𝑝𝑓𝑚𝑞2𝑡

(1)

S.t:

∑
𝑖

𝑋𝑟𝑖𝑗𝑡 = ∑
𝑚

𝜇𝑚𝑟𝑋𝑚𝑗𝑡 ∀𝑗,𝑟,𝑡 (2)

∑
𝑗

𝑋𝑟𝑖𝑗𝑡 ≤ 𝐶𝑎𝑝𝑖𝑟 ∀𝑟,𝑖,𝑡 (3)

∑
𝑗

𝑋1𝑗𝑘𝑡 = ∑
𝑙

𝑋1𝑘𝑙𝑡 ∀𝑘,𝑡 (4)

∑
𝑗

𝑋2𝑗𝑘𝑡 = ∑
𝑙

𝑋2𝑘𝑙𝑡 ∀𝑘,𝑡 (5)

∑
𝑙

(𝑋1𝑘𝑙𝑡 +𝑋2𝑘𝑙𝑡) ≤ 𝐶𝑎𝑝𝑘 ∀𝑘,𝑡 (6)

∑
𝑘

𝑋1𝑗𝑘𝑡𝛾𝑚 ≤ 𝑋𝑚𝑗𝑡 ∀𝑚,𝑗,𝑡 (7)

∑
𝑘

𝑋2𝑗𝑘𝑡𝛾𝑚 ≤ ∑
𝑝

𝑋𝑝𝑗𝑚𝑞1(𝑡 ― 1) ∀𝑚,𝑗,𝑡 (8)

∑
𝑘

(𝑋1𝑗𝑘𝑡 + 𝑋2𝑗𝑘𝑡) ≤ 𝐶𝑎𝑝𝑗 ∀𝑗,𝑡 (9)

∑
𝑙

𝑋1𝑘𝑙𝑡 ≥ 𝐷𝑒1𝑙𝑡 ∀𝑙,𝑡 (10)

∑
𝑙

𝑋2𝑘𝑙𝑡 ≥ 𝐷𝑒2𝑙𝑡 ∀𝑙,𝑡 (11)
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∑
𝑐

𝑋𝑙𝑐𝑡 = (𝛼𝑙𝑡𝐷𝑒1𝑙𝑡) + (𝛽𝑙𝑡𝐷𝑒2𝑙𝑡) ∀𝑙,𝑡 (12)

∑
𝑙

𝑋𝑙𝑐𝑡 = 𝑋𝑐𝑡 ∀𝑐,𝑡 (13)

∑
𝑝,𝑗

𝑋𝑝𝑗𝑚𝑞1𝑡 = ∑
𝑐

𝜑𝑡𝛾𝑚𝑋𝑐𝑡 ∀𝑚,𝑡 (14)

∑
𝑝,𝑓

𝑋𝑝𝑓𝑚𝑞2𝑡 = ∑
𝑐

(𝜑𝑡 ― 1)𝛾𝑚𝑋𝑐𝑡 ∀𝑚,𝑡 (15)

(𝑋1𝑘𝑙𝑡 +𝑋2𝑘𝑙𝑡) ≤ 𝐵𝑖𝑔𝑀𝑌𝑘𝑙 ∀𝑘,𝑙,𝑡 (16)

𝑋𝑙𝑐𝑡 ≤ 𝐵𝑖𝑔𝑀𝑈𝑙𝑐 ∀𝑙,𝑐,𝑡 (17)

𝑈𝑙𝑐, 𝑌𝑘𝑙 ∈ {0,1} ∀𝑘,𝑙,𝑐 (18)

𝑋𝑐𝑡,𝑋1𝑘𝑙𝑡,𝑋2𝑘𝑙𝑡,𝑋1𝑗𝑘𝑡,𝑋2𝑗𝑘𝑡,𝑋𝑙𝑐𝑡,𝑋𝑝𝑗𝑚𝑞1𝑡,𝑋𝑝𝑓𝑚𝑞2𝑡,𝑋𝑟𝑖𝑗𝑡,𝑋𝑚𝑗𝑡 ≥ 0 ∀𝑖,𝑟,𝑗,𝑚,𝑞,𝑡,𝑘,𝑙,𝑝,𝑓,𝑐,𝑡 (19)

The objective function (1) maximizes the total profit in the CLGSCN. The benefit is obtained by 

differentiating revenue and cost.  Sources of revenue are the products, both grades 1 and 2, sold to 

customers.  The total cost to the company includes operating and shipping costs.

Therefore, the operating costs incurred in each period in the forward flow are costs of purchasing 

raw materials, the production of grade 1, the assembly of products grades 1 and 2, as well as 

operating costs of distribution centers. The reverse chain requires to pay for purchasing  used 

products from customers. Also, the cost of separating returned products, testing the quality of the 

separated parts that are included in the operating cost of the disassembly center and the cost of 

disposal of the waste parts are included in the reverse flow.

The shipping costs include the cost of transportation of raw materials, all products (grades 1 and 

2) from manufacturing centers to distribution centers and from distribution centers to customers in 

the forward chain; transportation costs of products return from collection centers to disassembly 
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centers, the cost of transporting reusable parts from disassembly centers being used in the melting 

process to production centers, and the cost of transporting waste pieces  to disposal centers.

Constraint (2) emphasizes that the amount of raw materials purchased from suppliers is equal to 

the amount of raw materials required for the production of grade 1 products. Constraint (3) shaows 

that the total amount of raw material shipped from each supplier cannot exceed the supply capacity 

of the supplier. Constraint (4) shows  that the amount of the grade 1 products produced carried 

from the production centers to the distribution centers is  equal with the amount of the first grade 

products carried from the distribution centers to customers. Constraint (5) shows that the amount 

of grade 2 products shipped from production centers to distribution centers is equal to grade 2 

products shipped from distribution centers to customers. Constraint (6) ensures that in each period, 

the flow of output from each distribution center does not exceed its capacity. Constraint (7) shows 

the number of pieces required for the production of first-grade products. Constraint (8) shows the 

number of pieces required for the production of second-grade products. Constraint (9) ensures that 

in each period, the flow of output from each production center does not exceed its production 

capacity. Constraint (10) ensures that a shortage is not allowed in each period for each customer 

for the first-grade product. Constraint (11) ensures that a shortage is not allowed in each period for 

each customerfor the second-grade product. Constraint (12) computes the  total number of returned 

products of the first and second grades.  Constraint (13) calculates the total number of returning 

products to each collection center. Constraint (14) calculates the amount of reusable parts inserted 

into the melting process.  Constraint (15) shows the amount of waste pieces to be disposed. 

Constraint (16) shows that in each period, each distribution center serves the customert that is 

assigned to. Constraint (17) shows that in each period, each collection center can only collect 
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returning products from each customerthat is assigned to. Constraints (18, 19) show binary 

variables and also indicates the integrity of the variables.

2.1. Uncertainty in the model

In the real world CLGSCN several parameters are not definite. The reasons could be, fluctuations 

in customers needs, material cost variations, differences in production cycle time, and etc. To 

achieve more realistic results, it is logical to consider uncertainty as much as possible (Qin and Ji, 

2010; Pishvaee et al., 2012; Gholizadeh et al., 2018; Gholizadeh et al., 2020). To address this 

challenge, a robust optimization approach has been used. Mulvey et al. (1995) presented a 

framework for optimization that includes two important definitions of "stable response" and "solid 

model". That is, an answer to the optimization model is called a steady response and remain 

optimal under all scenarios; and it is called "solid" when a model is almost justified under all 

scenarios. According to these definitions, researchers have developed a robust optimization model, 

which is related to data sets related to different scenarios. Mulvey and Ruszczynski (1995) stated 

that mathematical programming models are faced with oscillatory and reliable data leading to 

probabilistic uncertainty. In general, in confronting with our optimization model, we have  a 

structural part, which is constant and free of any fluctuations in the input data; and the control part 

having functions with uncertain data. We consider three demand scenarios and update the model 

accordingly. Below, the required mathematical notations for uncertain model are given and the 

robust counterpart mathematical model is formulated accordingly.

The robust mathematical notations are as follows:

Index

𝑆 Demand scenario (high, average, low)  𝑠 = 1, …, 𝑆
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 Parameters

𝑃𝑆 Probability of scenario 𝑠

𝑤 Weight for the violated constraints

𝜆 Constant values

Decision variables

𝜃𝑠 The linearization coefficient under the scenario 𝑠

 𝛿1𝑙𝑡𝑠 The amount of unsuccessful demand first-grade product in the scenario 𝑠

 𝛿2𝑙𝑡𝑠 The amount of unsuccessful demand second-grade product in the scenario 𝑠

𝑚𝑎𝑥 = ∑
𝑠

𝑃𝑠[∑
𝑘,𝑙,𝑡,𝑠

𝑋1𝑘𝑙𝑡𝑠𝑄𝐹1𝑙𝑡 + 𝑋2𝑘𝑙𝑡𝑠𝑄𝐹1𝑙𝑡 ― ∑
𝑟,𝑗,𝑖,𝑡,𝑠

𝑋𝑟𝑖𝑗𝑡𝑠𝑃𝑟𝑟𝑖𝑗𝑡 ― ∑
𝑚,𝑗,𝑡,𝑠

𝑋𝑚𝑗𝑡𝑠𝑃𝑀𝑚𝑖𝑡 ― ∑
𝑗,𝑘,𝑡,𝑠

𝐻𝑀𝑗𝑡(𝑋1𝑗𝑘𝑡𝑠 + 𝑋2𝑗𝑘𝑡𝑠)

― ∑
𝑘,𝑙,𝑡,𝑠

𝑜𝑝𝑐𝑘𝑡(𝑋1𝑘𝑙𝑡𝑠 +𝑋2𝑘𝑙𝑡𝑠) ― ∑
𝑙,𝑐,𝑡,𝑠

𝑋𝑙𝑐𝑡𝑠𝑃𝐵𝑡 ― ∑
𝑝,𝑐,𝑡,𝑠

𝑋𝑐𝑡𝑠𝑃𝐶𝑝𝑡 ― ∑
𝑝,𝑓,𝑚,𝑡,𝑠

𝑃𝐷𝑓𝑡𝑋𝑝𝑓𝑚𝑞2𝑡𝑠 ― ∑
𝑟,𝑗,𝑖,𝑡,𝑠

𝑋𝑟𝑖𝑗𝑡,𝑠𝑇𝐶𝑟𝑖𝑗𝑡 ― ∑
𝑗,𝑘,𝑡,𝑠

𝑇𝐶𝑗𝑘𝑡(𝑋1𝑗𝑘𝑡𝑠 + 𝑋2𝑗𝑘𝑡𝑠) ― ∑
𝑘,𝑙,𝑡,𝑠

𝑇𝐶𝑘𝑙𝑡(𝑋1𝑘𝑙𝑡𝑠 +𝑋2𝑘𝑙𝑡𝑠) ― ∑
𝑝,𝑐,𝑡,𝑠

𝑋𝑐𝑡𝑠𝑇𝐶𝑝𝑐𝑡 ― ∑
𝑝,𝑗,𝑚,𝑡,𝑠

𝑇𝐶𝑝𝑗𝑚𝑡𝑋𝑝𝑗𝑚𝑞1𝑡𝑠 ― ∑
𝑝,𝑓,𝑚,𝑡,𝑠

𝑇𝐶𝑝𝑓𝑚𝑡𝑋

𝑝𝑓𝑚𝑞2𝑡𝑠] + 𝜆∑
𝑠

𝑃𝑠[(∑
𝑘,𝑙,𝑡,𝑠

𝑋1𝑘𝑙𝑡𝑠𝑄𝐹1𝑙𝑡 + 𝑋2𝑘𝑙𝑡𝑠𝑄𝐹1𝑙𝑡 ― ∑
𝑟,𝑗,𝑖,𝑡,𝑠

𝑋𝑟𝑖𝑗𝑡𝑠𝑃𝑟𝑟𝑖𝑗𝑡 ― ∑
𝑚,𝑗,𝑡,𝑠

𝑋𝑚𝑗𝑡𝑠𝑃𝑀𝑚𝑖𝑡 ― ∑
𝑗,𝑘,𝑡,𝑠

𝐻𝑀𝑗𝑡(𝑋1𝑗𝑘𝑡𝑠

+ 𝑋2𝑗𝑘𝑡𝑠) ― ∑
𝑘,𝑙,𝑡,𝑠

𝑜𝑝𝑐𝑘𝑡(𝑋1𝑘𝑙𝑡𝑠 +𝑋2𝑘𝑙𝑡𝑠) ― ∑
𝑙,𝑐,𝑡,𝑠

𝑋𝑙𝑐𝑡𝑠𝑃𝐵𝑡 ― ∑
𝑝,𝑐,𝑡,𝑠

𝑋𝑐𝑡𝑠𝑃𝐶𝑝𝑡 ― ∑
𝑝,𝑓,𝑚,𝑡,𝑠

𝑃𝐷𝑓𝑡𝑋𝑝𝑓𝑚𝑞2𝑡𝑠

― ∑
𝑟,𝑗,𝑖,𝑡,𝑠

𝑋𝑟𝑖𝑗𝑡,𝑠𝑇𝐶𝑟𝑖𝑗𝑡 ― ∑
𝑗,𝑘,𝑡,𝑠

𝑇𝐶𝑗𝑘𝑡(𝑋1𝑗𝑘𝑡𝑠 + 𝑋2𝑗𝑘𝑡𝑠) ― ∑
𝑘,𝑙,𝑡,𝑠

𝑇𝐶𝑘𝑙𝑡(𝑋1𝑘𝑙𝑡𝑠 +𝑋2𝑘𝑙𝑡𝑠) ― ∑
𝑝,𝑐,𝑡,𝑠

𝑋𝑐𝑡𝑠𝑇𝐶𝑝𝑐𝑡 ― ∑
𝑝,𝑗,𝑚,𝑡,𝑠

𝑇𝐶𝑝𝑗𝑚𝑡𝑋

𝑝𝑗𝑚𝑞1𝑡𝑠 ― ∑
𝑝,𝑓,𝑚,𝑡,𝑠

𝑇𝐶𝑝𝑓𝑚𝑡𝑋𝑝𝑓𝑚𝑞2𝑡𝑠) ― ∑
𝑆′

𝑃𝑠′( ∑
𝑘,𝑙,𝑡,𝑆′

𝑋1𝑘𝑙𝑡𝑆′𝑄𝐹1𝑙𝑡 + 𝑋2𝑘𝑙𝑡𝑆′𝑄𝐹1𝑙𝑡 ― ∑
𝑟,𝑗,𝑖,𝑡,𝑆′

𝑋𝑟𝑖𝑗𝑡𝑆′𝑃𝑟𝑟𝑖𝑗𝑡

― ∑
𝑚,𝑗,𝑡,𝑆′

𝑋𝑚𝑗𝑡𝑆′𝑃𝑀𝑚𝑖𝑡 ― ∑
𝑗,𝑘,𝑡,𝑆′

𝐻𝑀𝑗𝑡(𝑋1𝑗𝑘𝑡𝑆′ + 𝑋2𝑗𝑘𝑡𝑆′) ― ∑
𝑘,𝑙,𝑡,𝑆′

𝑜𝑝𝑐𝑘𝑡(𝑋1𝑘𝑙𝑡𝑆′ +𝑋2𝑘𝑙𝑡𝑆′) ― ∑
𝑙,𝑐,𝑡,𝑆′

𝑋𝑙𝑐𝑡𝑆′𝑃𝐵𝑡

― ∑
𝑝,𝑐,𝑡,𝑆′

𝑋𝑐𝑡𝑆′𝑃𝐶𝑝𝑡 ― ∑
𝑝,𝑓,𝑚,𝑡,𝑆′

𝑃𝐷𝑓𝑡𝑋𝑝𝑓𝑚𝑞2𝑡𝑆′ ― ∑
𝑟,𝑗,𝑖,𝑡,𝑆′

𝑋𝑟𝑖𝑗𝑡,𝑆′𝑇𝐶𝑟𝑖𝑗𝑡 ― ∑
𝑗,𝑘,𝑡,𝑆′

𝑇𝐶𝑗𝑘𝑡(𝑋1𝑗𝑘𝑡𝑆′ + 𝑋2𝑗𝑘𝑡𝑆′) ― ∑
𝑘,𝑙,𝑡,𝑆′

𝑇𝐶𝑘𝑙𝑡(𝑋1

𝑘𝑙𝑡𝑆′ +𝑋2𝑘𝑙𝑡𝑆′) ― ∑
𝑝,𝑐,𝑡,𝑆′

𝑋𝑐𝑡𝑆′𝑇𝐶𝑝𝑐𝑡 ― ∑
𝑝,𝑗,𝑚,𝑡,𝑆′

𝑇𝐶𝑝𝑗𝑚𝑡𝑋𝑝𝑗𝑚𝑞1𝑡𝑆′ ― ∑
𝑝,𝑓,𝑚,𝑡,𝑆′

𝑇𝐶𝑝𝑓𝑚𝑡𝑋𝑝𝑓𝑚𝑞2𝑡𝑆′) + 2𝜃𝑠] + 𝑤∑
𝑙,𝑡,𝑠

𝑃𝑠(𝛿1𝑙𝑡𝑠

+ 𝛿2𝑙𝑡𝑠)

(20)

S.t:

∑
𝑖

𝑋𝑟𝑖𝑗𝑡𝑠 = ∑
𝑚

𝜇𝑚𝑟𝑋𝑚𝑗𝑡𝑠 ∀𝑗,𝑟,𝑡,𝑠 (21)

∑
𝑗

𝑋𝑟𝑖𝑗𝑡𝑠 ≤ 𝐶𝑎𝑝𝑖𝑟 ∀𝑟,𝑖,𝑡,𝑠 (22)



18

∑
𝑗

𝑋1𝑗𝑘𝑡𝑠 = ∑
𝑙

𝑋1𝑘𝑙𝑡𝑠 ∀𝑘,𝑡,𝑠 (23)

∑
𝑗

𝑋2𝑗𝑘𝑡𝑠 = ∑
𝑙

𝑋2𝑘𝑙𝑡𝑠 ∀𝑘,𝑡,𝑠 (24)

∑
𝑙

(𝑋1𝑘𝑙𝑡𝑠 +𝑋2𝑘𝑙𝑡𝑠) ≤ 𝐶𝑎𝑝𝑘 ∀𝑘,𝑡,𝑠 (25)

∑
𝑘

𝑋1𝑗𝑘𝑡𝑠𝛾𝑚 ≤ 𝑋𝑚𝑗𝑡𝑠 ∀𝑚,𝑗,𝑡,𝑠 (26)

∑
𝑘

𝑋2𝑗𝑘𝑡𝑠𝛾𝑚 ≤ ∑
𝑝

𝑋𝑝𝑗𝑚𝑞1(𝑡 ― 1)𝑠 ∀𝑚,𝑗,𝑡,𝑠 (27)

∑
𝑘

(𝑋1𝑗𝑘𝑡𝑠 + 𝑋2𝑗𝑘𝑡𝑠) ≤ 𝐶𝑎𝑝𝑗 ∀𝑗,𝑡,𝑠 (28)

∑
𝑙

𝑋1𝑘𝑙𝑡𝑠 ≥ 𝐷𝑒1𝑙𝑡𝑠 + 𝛿1𝑙𝑡𝑠 ∀𝑙,𝑡,𝑠 (29)

∑
𝑙

𝑋2𝑘𝑙𝑡𝑠 ≥ 𝐷𝑒2𝑙𝑡𝑠 + 𝛿2𝑙𝑡𝑠 ∀𝑙,𝑡,𝑠 (30)

∑
𝑐

𝑋𝑙𝑐𝑡𝑠 = (𝛼𝑙𝑡𝐷𝑒1𝑙𝑡𝑠) + (𝛽𝑙𝑡𝐷𝑒2𝑙𝑡𝑠) ∀𝑙,𝑡,𝑠 (31)

∑
𝑙

𝑋𝑙𝑐𝑡𝑠 = 𝑋𝑐𝑡𝑠 ∀𝑐,𝑡,𝑠 (32)

∑
𝑝,𝑗

𝑋𝑝𝑗𝑚𝑞1𝑡𝑠 = ∑
𝑐

𝜑𝑡𝛾𝑚𝑋𝑐𝑡𝑠 ∀𝑚,𝑡,𝑠 (33)

∑
𝑝,𝑓

𝑋𝑝𝑓𝑚𝑞2𝑡𝑠 = ∑
𝑐

(𝜑𝑡 ― 1)𝛾𝑚𝑋𝑐𝑡𝑠 ∀𝑚,𝑡,𝑠 (34)

(𝑋1𝑘𝑙𝑡𝑠 +𝑋2𝑘𝑙𝑡𝑠) ≤ 𝐵𝑖𝑔𝑀𝑌𝑘𝑙 ∀𝑘,𝑙,𝑡,𝑠 (35)

𝑋𝑙𝑐𝑡𝑠 ≤ 𝐵𝑖𝑔𝑀𝑈𝑙𝑐 ∀𝑙,𝑐,𝑡,𝑠 (36)
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[∑
𝑘,𝑙,𝑡,𝑠

𝑋1𝑘𝑙𝑡𝑠𝑄𝐹1𝑙𝑡 + 𝑋2𝑘𝑙𝑡𝑠𝑄𝐹1𝑙𝑡 ― ∑
𝑟,𝑗,𝑖,𝑡,𝑠

𝑋𝑟𝑖𝑗𝑡𝑠𝑃𝑟𝑟𝑖𝑗𝑡 ― ∑
𝑚,𝑗,𝑡,𝑠

𝑋𝑚𝑗𝑡𝑠𝑃𝑀𝑚𝑖𝑡 ― ∑
𝑗,𝑘,𝑡,𝑠

𝐻𝑀𝑗𝑡(𝑋1𝑗𝑘𝑡𝑠 + 𝑋2𝑗𝑘𝑡𝑠) ― ∑
𝑘,𝑙,𝑡,𝑠

𝑜𝑝𝑐𝑘𝑡(𝑋1𝑘𝑙𝑡𝑠 +𝑋2𝑘𝑙𝑡𝑠)

― ∑
𝑙,𝑐,𝑡,𝑠

𝑋𝑙𝑐𝑡𝑠𝑃𝐵𝑡 ― ∑
𝑝,𝑐,𝑡,𝑠

𝑋𝑐𝑡𝑠𝑃𝐶𝑝𝑡 ― ∑
𝑝,𝑓,𝑚,𝑡,𝑠

𝑃𝐷𝑓𝑡𝑋𝑝𝑓𝑚𝑞2𝑡𝑠 ― ∑
𝑟,𝑗,𝑖,𝑡,𝑠

𝑋𝑟𝑖𝑗𝑡,𝑠𝑇𝐶𝑟𝑖𝑗𝑡 ― ∑
𝑗,𝑘,𝑡,𝑠

𝑇𝐶𝑗𝑘𝑡(𝑋1𝑗𝑘𝑡𝑠 + 𝑋2𝑗𝑘𝑡𝑠) ― ∑
𝑘,𝑙,𝑡,𝑠

𝑇𝐶𝑘𝑙𝑡(𝑋1𝑘𝑙𝑡𝑠 +𝑋2𝑘𝑙𝑡𝑠) ― ∑
𝑝,𝑐,𝑡,𝑠

𝑋𝑐𝑡𝑠𝑇𝐶𝑝𝑐𝑡 ― ∑
𝑝,𝑗,𝑚,𝑡,𝑠

𝑇𝐶𝑝𝑗𝑚𝑡𝑋𝑝𝑗𝑚𝑞1𝑡𝑠 ― ∑
𝑝,𝑓,𝑚,𝑡,𝑠

𝑇𝐶𝑝𝑓𝑚𝑡𝑋𝑝𝑓𝑚𝑞2𝑡𝑠] + ∑
𝑠

𝑃𝑠[(∑
𝑘,𝑙,𝑡,𝑠

𝑋1𝑘𝑙𝑡𝑠

𝑄𝐹1𝑙𝑡 + 𝑋2𝑘𝑙𝑡𝑠𝑄𝐹1𝑙𝑡 ― ∑
𝑟,𝑗,𝑖,𝑡,𝑠

𝑋𝑟𝑖𝑗𝑡𝑠𝑃𝑟𝑟𝑖𝑗𝑡 ― ∑
𝑚,𝑗,𝑡,𝑠

𝑋𝑚𝑗𝑡𝑠𝑃𝑀𝑚𝑖𝑡 ― ∑
𝑗,𝑘,𝑡,𝑠

𝐻𝑀𝑗𝑡(𝑋1𝑗𝑘𝑡𝑠 + 𝑋2𝑗𝑘𝑡𝑠) ― ∑
𝑘,𝑙,𝑡,𝑠

𝑜𝑝𝑐𝑘𝑡(𝑋1𝑘𝑙𝑡𝑠

+𝑋2𝑘𝑙𝑡𝑠) ― ∑
𝑙,𝑐,𝑡,𝑠

𝑋𝑙𝑐𝑡𝑠𝑃𝐵𝑡 ― ∑
𝑝,𝑐,𝑡,𝑠

𝑋𝑐𝑡𝑠𝑃𝐶𝑝𝑡 ― ∑
𝑝,𝑓,𝑚,𝑡,𝑠

𝑃𝐷𝑓𝑡𝑋𝑝𝑓𝑚𝑞2𝑡𝑠 ― ∑
𝑟,𝑗,𝑖,𝑡,𝑠

𝑋𝑟𝑖𝑗𝑡,𝑠𝑇𝐶𝑟𝑖𝑗𝑡

― ∑
𝑗,𝑘,𝑡,𝑠

𝑇𝐶𝑗𝑘𝑡(𝑋1𝑗𝑘𝑡𝑠 + 𝑋2𝑗𝑘𝑡𝑠) ― ∑
𝑘,𝑙,𝑡,𝑠

𝑇𝐶𝑘𝑙𝑡(𝑋1𝑘𝑙𝑡𝑠 +𝑋2𝑘𝑙𝑡𝑠) ― ∑
𝑝,𝑐,𝑡,𝑠

𝑋𝑐𝑡𝑠𝑇𝐶𝑝𝑐𝑡 ― ∑
𝑝,𝑗,𝑚,𝑡,𝑠

𝑇𝐶𝑝𝑗𝑚𝑡𝑋𝑝𝑗𝑚𝑞1𝑡𝑠 ― ∑
𝑝,𝑓,𝑚,𝑡,𝑠

𝑇𝐶

𝑝𝑓𝑚𝑡𝑋𝑝𝑓𝑚𝑞2𝑡𝑠) + 𝜃𝑠] ≥ 0

∀𝑠 (37)

𝑈𝑙𝑐, 𝑌𝑘𝑙 ∈ {0,1} ∀𝑘,𝑙,𝑐 (38)

𝑋𝑐𝑡𝑠,𝑋1𝑘𝑙𝑡𝑠,𝑋2𝑘𝑙𝑡𝑠,𝑋1𝑗𝑘𝑡𝑠,𝑋2𝑗𝑘𝑡𝑠,𝑋𝑙𝑐𝑡𝑠,𝑋𝑝𝑗𝑚𝑞1𝑡𝑠,𝑋𝑝𝑓𝑚𝑞2𝑡𝑠,𝑋𝑟𝑖𝑗𝑡𝑠,𝑋𝑚𝑗𝑡𝑠 ≥ 0 ∀𝑖,𝑟,𝑗,𝑚,𝑞,𝑡,𝑘,𝑙,𝑝,𝑓,𝑐,𝑡
(39)

In the relation (20), the objective function consists of three parts, the first two are the mean and 

the variance of the total time of the CLGSCN;the third part measures the objective 

functionrobustnessconsidering uncertain values of control constraints under each scenario. 

Constraints (21) to (36) are similar to the ones in the definite model under different scenarios. The 

constraint (37) is added to the model for converting the nonlinear objective function to a linear 

one. And constraints (38) and (39) indicate the type of variables and the assurance of non-

negativity.  Since the model assumptions state that the deficiency is not allowed, the unresolved 

demand is . 𝛿1𝑙𝑡𝑠 = 0 𝑎𝑛𝑑  𝛿2𝑙𝑡𝑠 = 0

To optimize such a complex multi period tobust mathematical model, while the complexity 

increases by adding the number of scenarios and period of times. Thus, a meta-heuristic 

optimization approach is required. Next, we develop a modified version of genetic algorithm as a 

solution approach.
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3. Solution Approach 

3.1. Modified Genetic Algorithm

The genetic algorithm (GA) creates an initial population for the optimization purpose. Each person 

is tested against a set of data, and the most suitable ones (perhaps 11% of the most suitable ones) 

are left out. The rest is set aside, the most suitable individuals mating together, the displacement 

of the DNA elements leading to random changes of DNA elements. We aim to modify the local 

search process of classic GA while the number of iterations influence the outputs of the 

optimization. 

The procedure is to define an objective/fitness function, and set the GA operators (such as 

population size, parent/offspring ratio, selection method, number of crossovers, and mutation rate); 

then randomly generate the initial population,  as the current parent population; next the objective 

function is evaluated and a new generation of an offspring is populated; the objective function is 

evaluated and a local search on each offspring is performed to evaluate fitness of each new 

location, and replace the offspring if there exists a locally improved solution (this modification is 

peformed on the general GA to decrease the optimization time); decide about a replacement and 

check the stopping criterion.

In this algorithm, the chromosome is composed of seven parts. All of these parts are composed of 

strings of real value in the range [0,1]. Together, they create an answer to the problem that the 

values of the variables and the objective function can be calculated; we now detail each of the 

steps proposed for the developed robust mathematical model.
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Step 1: This step consists of a five-dimensional matrix measuring . The real [𝐾 ∗ 𝐿 ∗ 𝑄 ∗ 𝑇 ∗ 𝑆]

numbers are in the range [0,1]. This step specifies that each customer in each period, receives the 

required  grade 1 products from distributors.

Step 2: This step is the same as in the previous step, with the distinction being the relationship 

between the customer and the distributor.It consists of a matrix with dimensions  [𝐽 ∗ 𝐾 ∗ 𝑄 ∗ 𝑇 ∗ 𝑆]

and the allocation method is quite similar to the first step.

Step 3: After determining the demand of production for each of the manufacturers from steps 1 

and 2, the third part of the chromosome for supplying the required raw materials identifies the 

relationship between the producers and the suppliers of the raw materials. In this step, a matrix of 

 is formed and, as in the previous steps, specifies how the material flows.[𝐼 ∗ 𝐽 ∗ 𝑅 ∗ 𝑇 ∗ 𝑆]

Step 4: In the fourth step, the chromosome consists of a  matrix that determines how [𝐿 ∗ 𝐶 ∗ 𝑇 ∗ 𝑆]

to send the returned products to the collection center.

Step 5: Once the amounts collected products in the collection centers have been determined, in the 

fifth step of the chromosome, sending products from the collection centers to the disassembly 

centers is carried out. This step consists of a matrix  [𝐶 ∗ 𝑃 ∗ 𝑇 ∗ 𝑆].

Step 6: Once the materials are collected and sent to the disassembly centers, these centers divide 

the products into two usable (to be sent to the melting process) and useless categories. This step 

consists of a matrix  determining how to ship recycled materials to manufacturers [𝑃 ∗ 𝐽 ∗ 𝑇 ∗ 𝑆]

based on their needs.

Step 7: In this step, a chromosome with  unused products is sent from disassembly [𝑃 ∗ 𝐹 ∗ 𝑇 ∗ 𝑆]

centers to disposal centers.
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Step 8: In the crossover process,  is considering as a crossover probability. Randomly, two 𝑃𝑛

chromosomes are selected as parents of the population. For two-parent chromosomes, a random 

number r is determined in the interval [0,1]. Then, the middle point of the two parents’ 

chromosomes are changed to produce their offsprings.

Step 9: After the crossover process, we populate the population with mutation operations. In the 

process of mutation  is considered as a probability of mutation. A multi-point mutation 𝑃𝑚

operation is used for population renewal. For each chromosome, a random number r is defined in 

interval [0,1]. In order to mutate in each of the chromosome portions, two rows or two columns 

are randomly selected, and using the local search the optimal pointsbetween them are displaced, 

invertly.

Step 10: After selection, crossover and mutation, a new population is created. The genetic 

algorithm is terminated up to a maximum number of  repetitions.𝐺

The process of our proposed modified GAis depicted in Figure 2.
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Local search

Figure 2. Overview of the Modified GA 

4. Numerical case study

In this section, numerical experiments are carried out to evaluate the proposed model's behavior 

and solution. Solutions methods are encoded in MATLAB environment.

The melting industry (called Melting Imen Tabarestan company) , which is considered in this 

research, is an industrial furnace manufacturing company located in North part of Iran. Production 

of industrial furnaces has been widely used to supply industrial companies using casting and 

foundary shops. Given the demand for melting furnaces, time for delivery and recycling are 

especially important. At present, the company is under great pressure to recycle the materials used 

because of government regulations and economic benefits. We apply a scenario-based linear 

programming model for this closed-loop green supply chain network problem. Initially solved in 

small dimensions in the Lingo software; and then we solve the larger dimension with the modified 
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genetic algorithm encoded in MATLAB environment. The genetic algorithm is developed using 

the MATLAB 2014 programming language. Using a 1.6 GHz computer with a capacity of 6 GB, 

the generated code is executed and the results are shown in the following tables. To solve large 

dimensions, 30 sample instances were selected and each problem was replicated 5 times and solved 

individually. The dimensions of the sample problems listed in Table 3.

The values of the parameters used in the model are based on the collected data from the case 

study that are fitted on probability distributions using the goodness of fit technique; some data 

are also randomly generated from the probabilityfunctions listed in Table 4and employed in each 

step of the modified genetic algorithm.

Table 3. Problem dimensions
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1 3 2 2 3 2 2 2 3 2 2 3
2 3 2 2 3 2 2 2 3 2 2 3
3 3 3 2 3 2 2 2 3 2 2 3
4 4 3 3 3 2 2 3 3 3 3 3
5 4 3 3 3 2 2 3 3 3 3 3
6 4 4 3 4 4 3 3 4 3 3 3
7 5 4 4 4 4 3 4 4 4 4 3
8 5 3 4 4 4 3 4 4 4 4 3
9 5 5 4 4 4 3 4 4 4 4 3
10 5 2 3 4 4 3 3 4 5 5 3
11 5 2 3 3 5 4 3 5 5 5 3
12 5 4 3 7 5 4 3 5 5 5 3
13 5 5 3 7 5 4 2 5 6 6 3
14 6 2 4 4 5 4 8 5 6 6 3
15 6 4 4 4 3 4 4 5 6 6 3
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16 6 2 4 6 3 5 3 6 7 3 3
17 6 8 4 6 3 5 5 6 7 2 3
18 6 3 3 7 4 5 6 6 7 8 3
19 7 5 3 7 4 5 3 6 4 4 3
20 7 7 8 6 5 5 5 6 6 3 3
21 7 7 8 6 5 6 5 7 6 6 3
22 7 7 8 6 5 6 5 7 9 6 3
23 8 8 8 5 5 6 8 7 9 6 3
24 8 8 8 5 6 6 8 7 9 8 3
25 8 6 6 5 6 6 8 7 10 8 3
26 8 6 6 7 6 4 8 8 10 8 3
27 8 6 6 7 6 4 8 8 10 8 3
28 9 7 9 7 5 4 4 8 5 6 3
29 9 7 9 8 5 5 4 8 5 6 3
30 9 7 9 8 5 5 4 8 5 6 3

Table 4. Parameters values

Parameters Probability distribution function
𝑃𝑟𝑟𝑖𝑗𝑡 U[4,19]
𝑃𝑀𝑚𝑖𝑡 U[32,65]
𝐻𝑀𝑗𝑡 U[50,155]
𝑜𝑝𝑐𝑘𝑡 U[105,185]
𝑃𝐵𝑡 U[85,220]
𝑃𝐶𝑝𝑡 U[45,105]
𝑃𝐷𝑓𝑡 U[50,110]
𝑇𝐶𝑖𝑗𝑟𝑡 U[20,35]
𝑇𝐶𝑗𝑘𝑡 U[20,35]
𝑇𝐶𝑘𝑙𝑡 U[20,33]
𝑇𝐶𝑐𝑝𝑡 U[20,33]

𝑇𝐶𝑝𝑗𝑚𝑡 U[20,32]
𝑇𝐶𝑝𝑓𝑚𝑡 U[20,32]
𝐷𝑒1𝑙𝑡 U[0,200]
𝐷𝑒2𝑙𝑡 U[0,100]

𝛼𝑙𝑡 U[0.52,0.78]
𝛽𝑙𝑡 U[0.28,0.56]
𝜇𝑚𝑟 U[0.37,0.67]

𝑄𝐹1𝑙𝑡 U[2000,12000]
𝑄𝐹2𝑙𝑡 U[1950,11950]
𝐶𝑎𝑝𝑖𝑟 U[60000,120000]
𝐶𝑎𝑝𝑗 U[15000,75000]
𝐶𝑎𝑝𝑘 U[10000,20000]

𝜑𝑡 U[0.2,0.6]
𝛾𝑚 U[0.37,0.57]
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𝐵𝑖𝑔𝑀 U[10000,100000]
𝑃𝑠 U[0,1]
𝜆 U[1000,10000]
𝑤 U[0.2,0.65]

In the following experiments, we consider the number of repetitions G = 150 and pop-size = 250. 

In addition, we perform the algorithm based on . The results are shown in Table 5. We used 𝑃𝑛 , 𝑃𝑚

relative percent deviation (RPD) to compare our results.

Table 5. Results obtained from the modified GA algorithm and Lingo

Problem 
No.

𝑷𝒄 𝑷𝒎

Modified GA 
objective 
function

Elapsed 
time RPD

objective 
function 

Lingo

Elapsed 
time 

Lingo
1 0.9 0.1 10225622 109.3354 0.0471 11005413 1
2 0.9 0.1 11366666 111.9889 0.007 10363216 1
3 0.9 0.1 15561965 112.5743 0.1132 15344758 1
4 0.9 0.1 20438669 113.1315 0.0381 20483956 2
5 0.9 0.1 15911009 128.5515 0.2351 16050510 7
6 0.9 0.1 29796618 122.1124 0.0849 28996989 5
7 0.9 0.1 21563661 136.0714 0.4116 20668679 41
8 0.9 0.1 22010916 134.3176 0.066 22790123 32
9 0.9 0.1 24985003 141.5507 0.0195 23998908 38
10 0.9 0.1 15807592 239.3354 0.2742 14999575 279
11 0.9 0.1 114874615 385.3631 0.05 106452114 307.5
12 0.9 0.1 117178746 405.1270 0.044 110167849 409.531
13 0.9 0.1 103721244 493.9971 0.0121 102725266 592.4571
14 0.9 0.1 103751814 585.3685 0.0955 102891418 643.2241
15 0.9 0.1 108934385 604.1986 0.02 113925483 623.4512
16 0.9 0.1 112178223 584.5906 0.0435 109173224 598.6574
17 0.9 0.1 118857453 657.2647 0.0421 105485326 689.5785
18 0.9 0.1 109827650 631.3870 0.0031 101817560 687.5421
19 0.9 0.1 128224137 664.5361 0.0041 115143714 712.1435
20 0.9 0.1 125731184 6612.794 0.0331 - -
21 0.9 0.1 120771813 6802.066 0.0096 - -
22 0.9 0.1 120516772 6543.759 0.2048 - -
23 0.9 0.1 125489941 6541.040 0.0071 - -
24 0.9 0.1 132010034 6627.233 0.0198 - -
25 0.9 0.1 135226526 6793.165 0.0358 - -
26 0.9 0.1 133784253 6871.449 0.0146 - -
27 0.9 0.1 126342144 6827.041 0.0151 - -
28 0.9 0.1 131081973 6908.552 0.0229 - -
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29 0.9 0.1 138118163 6972.706 0.0271 - -
30 0.9 0.1 128224137 7049.317 0.0111 - -

According to Table 5, in the evaluation of the first nineteen instances, the exact solution was 

obtained by LINGO. The exact solution time of LINGO and the outcomes of modified GA are 

compared in Figure 3. The results show that the solutions of the proposed modified GA are close 

to the exact solution of the problem. Therefore, the modified GA is appropriate to provide efficient 

solutions.
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Figure 3: Comparing the Solution Time in LINGO and Modified Genetic Algorithm

According to Figure 4, in evaluating the the first 9 instances, the time needed to provide a solution 

has increased significantly, even beyond the modified genetic algorithm. But from the ninth 

instance onwards, the solution time of the modified genetic algorithm has increased. In the 
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evaluation of the ninth and later samples, the criteria for stopping the modified genetic algorithm 

from 150 to 170 were modified.
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Figure 4: Objective value comparison between LINGO and GA

Meanwhile, the time required for the modified GA is increased to provide a much better and more 

resonable solution than LINGO. From sample nineteen to thirteen, no precise solution has been 

provided by LINGO in about 1200 seconds. However, the proposed modified genetic algorithm  

obtained solutions in less than two hours. These results are shown in Table 5. Items 19 to 30 have 

larger dimensions and their solutions are shown in Table 5.

Compared to the optimal objective value obtained by Lingo software, the desired value obtained 

from the modified genetic algorithm can be considered as an optimal optimum value. As can be 
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seen, the proposed modified GA is applied with a scenario-driven optimization model to maximize 

the total profit of the closed-loop green supply chain. Based on the numerical examples and results, 

the modified GA is an efficient approach for optimization of the problem.  Thus, the outputs of the 

proposed modified GA are efficient in comparison to the exact solutions. Also, the modified GA 

is effective for obtaining solution of larger sized problems. The solution time of the modified GA 

is very satisfactory for different problem sizes. 

5. Analysis and managerial implications

In this section analyses are performed to investigate the efficiency of the proposed modified GA. 

As explained in Section 1, in past researches classic GA was used to optimize a CLGSCN. 

Therefore, we modified the classic GA to strengthen its performance. Nonetheless, the best 

comparison would be between classic GA and our modified GA to investigate the efficiency. Two 

dimensions of solution time and objective function value are considered for comparison purposes. 

Also, it should be note that our proposed modified GA performs very close to the exact method in 

small size problems and outperforms the exact method for larger sizes since exact method could 

not obtain the results in reasonable time.  Here, the developed robust mathematical formulation is 

implemented using classic GA. It should be note that the setting and other require data were exactly 

as modified GA. The results are shown in Table 6.
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Table 6. Comparison between classic GA and modified GA

Problem 
No.

𝑷𝒄 𝑷𝒎
Modified GA 

objective function Elapsed time Classic GA
Objective function Elapsed time

1 0.9 0.1 10225622 109.3354 10125622 111.5364
2 0.9 0.1 11366666 111.9889 11335341 113.7889
3 0.9 0.1 15561965 112.5743 14678695 113.6787
4 0.9 0.1 20438669 113.1315 19235512 115.2367
5 0.9 0.1 15911009 128.5515 15815321 129.7756
6 0.9 0.1 29796618 122.1124 28654512 124.2143
7 0.9 0.1 21563661 136.0714 20432521 138.9845
8 0.9 0.1 22010916 134.3176 21820715 136.7649
9 0.9 0.1 24985003 141.5507 23768992 144.7689

10 0.9 0.1 15807592 239.3354 14987571 242.5693
11 0.9 0.1 114874615 385.3631 10875214 389.6798
12 0.9 0.1 117178746 405.1270 109788766 410.6523
13 0.9 0.1 103721244 493.9971 102625354 498.7736
14 0.9 0.1 103751814 585.3685 102641734 591.7864
15 0.9 0.1 108934385 604.1986 107835487 611.3569
16 0.9 0.1 112178223 584.5906 111098723 597.8923
17 0.9 0.1 118857453 657.2647 117937763 664.8741
18 0.9 0.1 109827650 631.3870 108937762 638.6893
19 0.9 0.1 128224137 664.5361 128224137 672.9635
20 0.9 0.1 125731184 6612.794 124821475 6731.528
21 0.9 0.1 120771813 6802.066 119861923 6915.266
22 0.9 0.1 120516772 6543.759 119546891 6725.371
23 0.9 0.1 125489941 6541.040 124569762 6638.075
24 0.9 0.1 132010034 6627.233 131923078 6711.466
25 0.9 0.1 135226526 6793.165 134678789 6862.315
26 0.9 0.1 133784253 6871.449 132894567 6964.772
27 0.9 0.1 126342144 6827.041 125678435 6973.347
28 0.9 0.1 131081973 6908.552 130976870 7082.223
29 0.9 0.1 138118163 6972.706 137896254 7190.512
30 0.9 0.1 128224137 7049.317 127657234 7279.559

To analyze the differences, objective valuaes of both aalgorithms are depicted in Figure 5. It is 

clear that the objective function values of the modified GA outperforms the classic GA specifically 

in larger size problems. It is necessary to emphazie that in maximixation problem the objective 

value is the more the better. This performance is due to the activation of the local search inserted 

in the GA where it finds better initial solution for the replications of GA operators.  
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Figure 5. Comparison of objective function values- classic GA versus modified GA

Another analysis is performed on the solution times of the two algorithms. The comparsion of 

solution time is shown in Figure 6. In small size problems the solution times are almost similar but 

for larger sizes the modified GA solves the problems in less time (consider the dashed curve). It is 

due to the omission of extra solutions via local search since the population size deacreases and the 

solution time is reduced. 
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Figure 6. Comparison of solution time- classic GA versus modified GA

These comparisons show the efficiency of the modified GA being effective on tactical decisions 

of the proposed CLGSCN. Managers and policy makers need to know the amounts of decision 

variables and also the output of different scenarios in both economic and timely aspects. It is 

necessary to handle the operational decisions so that minimum environmental side effects are 

incurred to the CLGSCN.   

Managers will be benefited by the outputs of the model. Since uncertainty is inavoidable in melting 

industry, then it is necessary to be prepare to encounter different scenarios in production system. 

In some circumstances, interaction among scenarios is important. Consider, demand reduction, 

raw material costs increase, and operator dismiss occur at the same time. Then, the manager needs 

to know which grade of product and to what amount to produce and with which price to maximiza 

the revenues while at the same time the overall costs are rising.  Due to the velocity of the 
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fluctuations athe level of dynamism is also changed leading to essense of rapid decisions to keep 

existing in the competitive market. Another decision being based on the conditions, is applying 

reusable material in grade 2 products which is inevitable to expand markets to a low income 

market. 

6. Conclusions

In this paper, the closed loop green supply chain has been studied as a very challenging issue in 

the contemporary world. Based on literature research gap, a closed-loop green supply chain with 

different grades  extracted from a melting process in a reverse flow were investigated. Scenario 

based demand planning was considered to handle uncertainty of the model. Modeling emphasizes 

high profitability due to uncertainty in demand. To investigate various issues in this field, a robust 

optimization approach was used and embedded with a modified GA as an optimization approach. 

In order to prove the strength and convergence of GA, the proposed model was encoded and 

implemented in the LINGO 15.0 package and the results were compared with the proposed 

modified GA in small size problems. According to the results, the convergence of the proposed 

algorithm was proved to guarantee accuracy. As for future research, measuring the reliability of 

parts and products is suggested. In pricing, we can use various pricing strategies, including the 

game theory. Discount policies can be studied in the purchase of raw materials and products. 
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Highlights

• Show how data are produced, captured, organized and analyzed in modifications and redesign 
for a closed loop green supply chain 

• Highlight the impact of uncertainty and its application in robust optimization and genetic 
algorithm.

• Provide insights to industries Melting Imen Tabarestan (MIT) Company.

• We perform a sensitivity analysis to justify the robust optimization and genetic algorithm.


